深度分析科技部力推的五大AI策略
深度分析科技部力推的五大AI策略
2017.08.25 | 物聯網

台灣在物聯網時代,人工智慧在影像辨識、語音辨識、自然語音處理、大數據趨勢分析等領域有很強的需求,達到需求,才可能發展智慧機器人,以及在物聯網的影像、聲音感測做到夠好的表現。

最近科技部部長陳良基提出打造AI生態圈的五大發展策略明,台灣政府也把預算提高,表示政府重視人工智慧的發展趨勢,對台灣未來的物聯網與人工智慧發展是個好的開端。

仔細研究五大發展策略後,筆者做了以下解析。

1.建構AI主機

物聯網裝置將會產生大量的數據,而用這些數據,利用人工智慧的深度學習方式,可以得到不錯的模型。陳良基強調建造一個能高速運算的系統,為廠商與學界提供一個不錯的人工運算能力的服務。

我聽到有些業界的朋友認為政府這樣做是「與民爭利」認為AI中心自己做就可以了,但不是所有的廠商都能建得了很貴的Fab廠,如台積電為IC設計廠商提供Fab廠,才讓台灣的IC設計廠不用花大錢自建晶圓廠。

專注於設計,才能強大。同理人工智慧軟體公司不用花大錢自建人工智慧資料分析中心,透過這個強力系統來達成人工智慧的運算能力,讓人工智慧與物聯網產品及平台的公司,專注於自身系統與產品的發展,不必因為缺乏人工智慧學習系統而受制於人。

2.打造智慧機器人基地

因應少子化與老年化的趨勢,利用工業機器人與服務機器人替代短少的人力需求是不可變的趨勢,面對這個需求,在中科及南科設立智慧機器人研究中心,打造關鍵技術,這是好的方向。

在工業機器人上,台灣的上銀科技與鴻海集團在工業機器人都有不錯的能力及產品,目前的狀況是卡在服務機器人的能力不足,例如鴻海把機器人Pepper導入台灣後,機器人Pepper仍然不夠智慧是該產品租用量不佳的主因,所以重點放在服務機器人所需的台灣式(符合台灣現狀的)中文語音辨識、視覺辨識與智慧反應(跟AlphaGo類似的強化學習,不過更進階),台灣目前也已經有很多新創在視覺辨識上努力,中文語音辨識也有一些廠商投入,不過都不是專為機器人應用所打造。

達成好的智慧機器人能力,必須有清楚的藍圖,仔細的規劃台灣需要的人工智慧軟體能力,整合業界及學界的力量。學界進一步成立新創公司,最後達成強而有力的智慧機器人及對應產品。而50家新創與4000人的培育如果有此規劃做背書,會更有意義。

3.設立AI創新研究中心

以5年為期,每年預計投入10億元,鼓勵人工智慧基礎技術、智慧醫療、金融科技、智慧製造等人才與技術研發。台灣在智慧醫療與金融科技領域,因為法律問題造成數據蒐集難度高,可能導致創新研究進展緩慢,這樣反而就可惜了。

4.半導體射月計畫

這個部份是要強化物聯網用晶片、虛擬實境/擴增實境半導體的能力,以及人工智慧專用應用晶片(ASIC,就跟Google的TPU類似的晶片),或人工智慧通用型晶片(FPGA或GPU),這跟台灣本來就強的硬體設計能力結合。

在這之中,如何做好軟硬整合,支持人工智慧的利基廠商是關鍵。這個過程涉及將軟體邏輯做成硬體,強化運算速度,讓深度學習模型的邏輯運算增快,這不是硬體廠商閉門造車就可以完成的,而是要跟客戶深入合作。在客戶發展對應軟體及訓練模型時就參與,最後完成客戶所需的快速運算晶片,讓智慧設備與機器人不用一直聯網,用雲端大量運算達成智慧能力。

這跟台灣電子廠商過去習慣的ODM模式不同,而是與客戶共創的JDM(Joint-Design Development)模式。

5.科技大擂台

這是利用比賽吸引團隊加入,以完成好的數據模型。第一波是電腦中文聽力理解為主題。其實電腦中文聽力(語音辨識+語意理解)在對岸已有很多團隊發展,也發展到不錯的程度,特別是北京微軟研究院(語意理解正確率達94.1%)、百度跟科大訊飛(語意理解正確率達97%)。

但是因為兩岸地方語音習慣與很多用語不同,對岸已經發展出來的中文聽力能力,在台灣使用準確率不高。而透過這樣的獎勵方式,以深度學習的觀點,其實是激勵大家去蒐集大量相關的語音數據,並針對它下人工智慧的功夫,只是這樣的效果是否可以達成精確辨識語音的目標,其實有待觀察,如果成功,未來甚至可以衍生到台語或客語辨識。

除了語音本身,語意理解更是另一個難處,這點如果可以跟微軟合作,用位在微軟亞洲研究院開發的微軟語意理解引擎做轉接,深度學習就不用從頭學,進展會快很多,不知道這次參加的隊伍有沒有這樣的想法跟能力。

陳良基在文中也提到目前只有圍棋有顯著的人工智慧發展,所以台灣還有機會。

不過面對中國以國家之力發展的「互聯網+」與「AI+」的產業,我認為台灣其實並不適合跟中國做同樣的東西正面對決,可以針對台灣可以比中國做得好的部分與利基(例如智慧醫療與穿戴式裝置的整合,再搭配台灣的長照2.0計畫)好好發揮,而這需要台灣發展好的人工智慧做基礎。

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

往下滑看下一篇文章
終於出現「看得懂的保險」!國泰人壽以「保險視圖」引領資訊透明革命
終於出現「看得懂的保險」!國泰人壽以「保險視圖」引領資訊透明革命

在台灣,多數人的第一份保障來得很早,可能來自父母,或是出社會後自行投保。然而,直到今天仍有許多人即使手握數張保單,仍說不清自己到底保了什麼。條款繁複、名詞艱澀,導致投保當下似懂非懂,過一陣子就全忘了。保險資訊的不透明,讓風險管理變成了一場全憑印象、依賴業務員的信任遊戲。

自從國泰人壽推出 App 3.0,以「陪伴」重塑保戶與保險的關係,下一步,更要讓資訊變得透明、易讀、好上手。於是,「保險視圖」誕生了—由國泰人壽戰情室 diLab(Digital Insurance Lab)領軍打造的這個平台,試圖翻轉保單難懂的問題,將散落於規範、條款與系統的資訊重新整理、轉譯與可視化,讓保戶終於能「一圖看懂」保障全貌。

「我們希望做到的不只是查詢工具,而是讓保戶真正理解風險、開始做決定。」diLab 經理林蔚安說,這項專案從發想到上線歷時多年,可說是完成了連同業都不敢想像的艱鉅任務。這場透明革命如何開始?國泰人壽又如何讓這個看似困難的挑戰落地?

資訊透明:讓保險回到能被理解的語言

「保險商品本身就很複雜,很多人買了保險,打開保單還是看不懂。」林蔚安指出,國泰人壽累積 800 萬保戶,團隊在梳理客戶旅程時發現,即使擁有多年的資歷與服務經驗,卻未能讓保戶更清楚自己的保障;大多僅在與業務員討論時略有概念,事後又陷入陌生感。因此,「保險視圖」的構想,就是要讓保戶能在同一平台掌握所有保障與資產資訊。

數位時代
diLab 經理林蔚安與團隊歷時打磨領先業界的保險視圖,幫助保戶一次看懂保障。
圖/ 數位時代

第一步,是處理「看不懂」這件事。diLab 從資料盤點開始,依照生涯階段與保障屬性,將保單內容重新分為「我的健康照護」、「我的保險資產」、與「我的壽險傳承」三大方向,讓保戶以更貼近日常的邏輯理解保障結構,例如「住院時有哪些保障?」。

「調研時發現,國內幾乎沒有成熟案例可參考,國外雖有概念但差異極大。」林蔚安表示,圖表複雜,反而增加理解負擔,因此團隊反覆推敲呈現方式,「要放什麼、怎麼放、放到什麼程度,光這個架構就討論了數個月!」每一個看似微小的改變,背後都是無數次的反覆測試與訪談,「我們帶著不同版本的草稿詢問保戶,在沒有業務員引導下是否看得懂。」最終,團隊定調以金字塔結構建構視圖基礎,從保戶自己的健康保障,到未來可運用的累積資產,最終到照顧家人的壽險傳承。沒有看似花俏的圖表,只希望讓多數保戶好理解的簡單呈現。

但挑戰不只在前端設計,還有保險條款轉譯。傳統保單以商品邏輯分類,與使用者思考「何時會用到」的方式完全不同。為了讓資訊更貼近生活情境,「保險視圖」不再以條款分類,而以場景情境作為基準。例如保戶生病住院時,介面會按照基礎醫療、意外、癌症、重大疾病、長照與壽險等六大結構分層呈現,先呈現核心,再逐層深化,視覺化整體保障全貌,並同步提供現金價值與現金流資訊,形成一套完整的理解脈絡。

風險洞察:AI協助人們看清保障缺口

國泰人壽
視覺化保障達成率,一眼了解保障缺口。
圖/ 國泰人壽
國泰人壽
提供熱門推薦與更加個人化的AI推薦,喚醒補強意識。
圖/ 國泰人壽

當保險資訊透過直覺式的設計變得透明,下一個挑戰就是讓保戶理解「自己目前的保障夠不夠」。

因此「保險視圖」也導入保障目標試算功能,保戶只需回答幾題簡單問題,如:住院希望住單人房或雙人房、對疾病治療的費用承受度等,系統即可推算個人的保障目標。接著,AI 會即時計算保障達成率與缺口比例,將複雜的理賠與條款結構轉換成直覺的百分比。「醫療保障達成率 60%」、「癌症保障達成率 45%」,藉由直觀的數字圖表呈現,讓保戶能一眼看出自己保障的完整程度。

此外,平台不只呈現差距,還會以情境推估可能的支出。例如住院五天、手術一次的費用與實際理賠差異,讓保戶真正感受到風險的具體樣貌。「保戶不再是聽到『癌症住院很貴』這種抽象說法,而是看得到具體數字。」透過以場景為基礎的推算,使保戶終於能對模糊的風險概念有畫面,並對理賠內容有更直觀的理解。

平台也提供「熱門推薦」與「 AI 推薦」兩種建議模式。前者以性別、年齡作為分析基礎,後者則依個人資料與既有保單做更客製化的配置。保戶可在平台初步理解現況後,再與業務員討論,透過數位賦能、與有溫度的人性服務建立互補機制,也讓業務溝通更聚焦、更有效率。

領航轉型:戰情室以創新實踐「以人為本」

保險視圖歷經多次迭代上線,雖仍在推廣階段,但初步成效已浮現。以今年 4 月關稅議題為例,資產型保單查詢需求明顯攀升,保戶登入次數從每週平均 4 萬次提升到 5 萬 6 千次,大幅成長40%。以往查詢保單價值需透過業務員協助或臨櫃辦理,如今登入平台即可取得資訊。

國泰人壽
保險視圖一次呈現保戶的整體保險資產,建立更清晰的財務健康圖像。
圖/ 國泰人壽

此外,視覺化呈現保障缺口後,有保戶回饋「看到達成率 70%,就想補到 100%」,顯示視覺化真正促進了主動管理的行為轉換。

數位時代
diLab 戰情室跨商品、設計與數據協作,以使用者為中心反覆驗證,用心設計保險資訊呈現方式。
圖/ 數位時代

能完成一份視覺化介面不難,但能把 60 多年累積的保險商品結構、條款邏輯與資料系統重新整合再轉譯,背後極度仰賴組織文化。尤其,保險視圖的誕生,從構想到落地,專案歷時 4 年,期間國泰以「區塊化堆疊」的方式逐步發展服務功能,包括資產總覽、健康與壽險視圖、缺口試算與 AI 推薦,每一步都需要長時間協作與反覆推敲。

林蔚安形容:「戰情室就像加速器。」其角色是串聯商品、數據、數位、UI與UX設計、開發工程與行銷等多個團隊,以使用者中心作為共通語言,讓跨部門能在同一個目標下推進。「大家的專業不同,但只要目標一致,就能共同前進!」

數位時代
專案歷時多年,團隊成功以敏捷方式快速迭代,實現保險資訊透明化。
圖/ 數位時代

展望未來,透明化只是起點。林蔚安指出,下一步是讓更多保戶願意使用平台,使行為軌跡形成數據基礎,再透過個人化推播與 App 串接,發展國泰人壽保戶更完整的數位體驗。「這條路很難,但值得做。」他分享,有一次泰國人壽數位團隊來台交流,第一眼看到保險視圖就說:「這真的很不容易。」但也因此,更突顯國泰人壽勇於創新、以人為本的服務精神。同時,保險視圖也不會是終點,卻會是打開未來保險模式的一把關鍵鑰匙。國泰人壽以具體行動落實「Better Together 共創更好」,在每一項細節中重塑保險服務的日常價值。

保險視圖:https://cathaylife.tw/VoeoOdb

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓