刷存在感和吸引人才?蘋果公布首份AI論文,不再堅持保密
刷存在感和吸引人才?蘋果公布首份AI論文,不再堅持保密
2016.12.27 | 蘋果

以保密為文化傳統的蘋果一貫不喜歡對外公佈自己的研究成果。但不久前在機器學習的頂級大會NIPS上,蘋果AI團隊的負責人Russ Salakhutdinov宣佈,公司已經允許自己的AI研發人員對外公佈論文成果。這則消息剛剛宣佈沒多久,蘋果就發表了自己的第一篇論文,題目叫做《透過對抗訓練從類比與無監督圖像中學習》,論文描述了如何利用電腦生成的圖像而不是真實圖像改進演算法識別圖像能力的訓練。此舉一方面可以提高蘋果在AI界的存在感,同時如果其研究成果出色的話,也能在學術界贏得同行認可,並吸引到AI方面的人才。

在機器學習研究方面,訓練AI的圖像識別能力需要有標籤化的圖像作為訓練樣本。標籤化圖像的來源一般有兩種。一種是利用現實世界的圖像。真實世界的圖像資料則需要人工對電腦能看到的所有東西——比如樹木、貓狗、人、汽車等都打上標籤,顯然這是件非常耗時耗力的事情。用來訓練AI識別圖像的標籤圖像資料庫ImageNet就是耗費了大量人力用數年時間才建成的。另一種是利用合成圖像(比如影音遊戲裡面的圖像)。因為合成圖像本身已經標籤化並且經過注釋,所以訓練神經網路往往要比利用真實世界的圖像更有效。但合成圖像有一個問題,那就是演算法學到的東西並不能總是適用於現實世界場景,導致神經網路從合成圖像學到的東西很難通用到真實圖像上面。

為了改進利用合成圖像資料訓練的效果,蘋果的研究人員採用了「模擬+無監督(simulated+unsupervised)」的學習法來提升類比圖像對現實的模擬程度。他們利用了名為生成對抗網路的一個新版本,讓兩個神經網路相互對抗,最後產生照片級的圖像。

Apple AI research
模擬+無監督(S+U)學習。目標是得到一個改善合成圖像真實性的模型。透過向神經網路提供未打上標籤的真實資料與合成圖像進行對比,經過調優後生成的新的合成圖像會吸收真實圖像的一些特徵,從而變得更為逼真。
圖/ 蘋果

論文作者包括Ashish Shrivastava、Tomas Pfister以及 Josh Susskind等。其中 Susskind是Emotient的聯合創始人,這家AI新創企業可透過面部表情評估人的情緒,今年早些時候已經被蘋果收購。

正如開頭所述,蘋果的第一篇AI論文標誌著這家看重保密的公司邁出的一大步。在開源和開放成為主流的今天,隨著各大巨頭都在紛紛開放自己的機器學習技術來吸引人才、打造生態體系,蘋果過去的文化顯然已經不能跟上整體的步伐,及時作出改變是可喜的調整。

本文授權轉載自:36氪

往下滑看下一篇文章
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網

為守護保戶資產,南山人壽集結客戶服務、數位、資訊三個部門的能量,自行研發「黃金眼 AI 防詐模型」,自 2024 年底完成開發後,截至今年 11 月已成功阻擋多起詐騙案件、攔阻金額累計逾新臺幣 900 萬元,並獲得 2025 數位金融獎等殊榮。

「黃金眼 AI 防詐」模型為什麼可以有效防詐、更好守護保戶資產?

南山人壽客戶服務資深副總經理李淑娟面帶微笑地解釋:「『黃金眼 AI 防詐』是透過龐大的保戶資料結合前線客服的實務經驗建構而成的模型,不僅克服了壽險業交易頻率低且詐欺樣本極度不平衡的挑戰,還能夠偵測在臨櫃辦理保單借款或解約的高風險個案,讓客服人員可以主動提醒與關懷,有效降低詐騙風險,守護客戶資產安全與信任。」

南山人壽
南山人壽客戶服務資深副總經理李淑娟指出,詐騙手法快速進化,南山人壽研發黃金眼AI防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。
圖/ 數位時代

從詐保到詐財,壽險業面臨的風險加劇

過往,壽險業者面對的主要風險是保險詐欺,例如,透過偽造事故情節、虛構醫療紀錄等方式詐領保險理賠金,然而,隨著科技迭代與詐欺集團的組織化、專業化,這類手法已快速進化,從「偽造病歷、輕病久住、醫療共犯」等傳統模式,轉向結合數位科技與精準話術的跨領域詐財操作。

這一波詐欺風險不僅滲透力強、具備高迷惑性,也直接影響保戶資產安全。例如,詐欺集團利用假冒理賠諮詢等方式竊取保戶個資,再一步步誘導客戶辦理解約或申請保單借款,最後要求將資金匯到不明帳戶等,壽險業者面臨的風險範圍也從「詐領保險理賠」延伸到「詐騙保戶資產」。

李淑娟資深副總經理進一步指出,南山人壽每年要處理逾 35 萬件解約與借款案件,很難單憑人力在海量案件中精準辨識高風險個案。「為有效防堵詐欺事件,南山人壽除開發 AI 模型辨識詐保事件,更進一步研發黃金眼 AI 防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。」

南山人壽以黃金眼 AI 防詐模型守護保戶資產

在打造黃金眼 AI 防詐模型時,南山人壽面臨兩個挑戰:首先是壽險的交易頻率低,導致資料稀缺;其次,是詐欺樣本比例高度失衡,導致 AI 很容易誤判。為化解這些挑戰,南山人壽整合保戶行為、保戶與保單側寫資訊與情境因素等多模態資訊進行模型訓練,爾後,透過集成學習(Ensemble Learning)整合多個不同觀點的「專家模型」共同判讀,提升模型判斷準確性。

南山人壽數位專案經理蔡其杭表示:「以多模態數據源跟集成學習的策略打造黃金眼 AI 防詐模型後,我們除了將模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級,協助客服人員快速識別高風險個案,主動介入並阻斷詐騙,更透過『自適應演進』與『外部資源擴充』兩個機制,持續優化模型辨識精準度。」

南山人壽
南山人壽打造黃金眼AI防詐模型,將模型串連至臨櫃客服系統,以直觀的紅、黃、綠三色燈號,即時呈現保戶的風險等級、協助客服人員快速識別高風險個案。
圖/ 數位時代

「自適應演進」指的是,客服人員會依據模型亮起的燈號,結合系統提供的關懷提問表,向臨櫃辦理解約或借款的保戶進行關懷詢問,如資金用途、是否接獲可疑來電等,藉此釐清是否存在異常情況,並將相關結果回貼標籤,作為後續調校模型的關鍵訓練素材,讓黃金眼 AI 防詐模型越用越精準。

「外部資源擴充」則是透過更多元的外部數據強化模型的防詐能力。例如南山人壽與內政部警政署刑事警察局簽署反詐騙合作備忘錄(MOU),在合規架構下共享情資,協助核對保戶是否曾有詐欺通報紀錄。蔡其杭補充,南山人壽目前正與電信業者合作,將其超過 1,400 項特徵因子導入模型,有效提升模型燈號判斷的靈敏度與可靠度,使黃金眼 AI 防詐成為更全面的金融詐欺偵測引擎。

蔡其杭表示,詐騙的手法日新月異,AI 阻詐模型除了能準確識別可疑的高風險案例外,更重要的是具備與時俱進、持續調優模型能力和效果的機制;如同維持客戶服務的品質一樣,刻不容緩。

南山人壽
南山人壽數位專案經理蔡其杭表示,黃金眼AI防詐模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級。
圖/ 數位時代

李淑娟表示:「隨著模型的持續優化,黃金眼 AI 防詐模型的應用範疇將從目前的『臨櫃防堵』延伸到『全通路、跨產業、事前預警』的防禦機制,以事前預警的方式防堵詐欺事件。」舉例來說,當保戶撥打電話詢問保單借款或解約時,系統就會開始運作、提前識別風險,針對透過手機 APP 或網路平台辦理業務的數位客群,系統也會即時偵測,當出現高風險行為時即會立即展開關懷提問。

不僅從科技著手,南山人壽以 SAFE 逐步提升防詐安全網

值得特別注意的是,南山人壽並未將防詐視為單一的科技工程,而是從 SAFE–Skilled(防詐訓練)、Awareness(全民防詐)、Fintech(科技運用)、Engagement(聯防合作)–四個構面打造更完整的防護機制。

在專業技能方面,南山人壽不僅協助相關人員熟悉黃金眼 AI 防詐模型的操作模式,也持續透過內部教育訓練,以及跟刑事警察局等單位合作舉辦的工作坊等方式,全面提升員工識詐、阻詐的能力,達到 AI 人機互動的阻詐聯防保護網。

在防詐意識宣導方面,南山人壽除於全台 18 個分公司櫃檯播放刑事警察局提供的反詐騙影片,並在櫃檯明顯位置放置防詐文宣,協助來訪保戶掌握最新詐騙趨勢;更主動走入偏鄉、校園與新住民社群,並針對聽語障人士製作友善素材,以多元形式推廣防詐知識,降低詐騙事件發生的可能性。

在公私協力方面,李淑娟表示,南山人壽積極培育、鼓勵每一位壽險業務員成為「防詐大使」,在拜訪客戶時主動觀察各種異常徵兆,例如可疑的投資文宣或陌生人的頻繁出入,並將這些現場蒐集到的「軟性數據」提供回公司,作為模型判斷的補強資訊,以提升事前預警效果。

為了更好的保護高齡與失智等高風險族群,南山人壽也積極推動「保單安心聯絡人」機制,鼓勵保戶指定第二聯絡人,在其申請保單借款或終止契約時,可以主動通知聯絡人介入確認,降低詐騙風險;此外,亦針對受詐保戶提供「喘息關懷服務」,以低利紓困貸款協助保戶在遭遇詐騙後仍能穩定度過財務壓力,將防詐保護從事中攔阻延伸到事前預警與事後援助兩個層面,樹立產業新標竿。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓