台灣的軟體工程師都跑哪裡去了?
台灣的軟體工程師都跑哪裡去了?

台灣的軟體工程師都跑哪裡去了?這是一個困擾我很多年的問題。台灣有那麼多的資訊相關科系,每年有那麼多的畢業生,但是我們公司要找軟體工程師的時候,卻總覺得很難找。我原本以為是我們公司小,所以有些軟體工程師不願意來上班,但是我問了一些在大型軟體公司工作的老闆或是高階研發主管,他們也是一直在抱怨,說很難找到好的軟體工程師。我們只是依稀的知道,有很多的軟體工程師跑到硬體公司上班去了,但究竟為什麼會這樣?我一直搞不懂,而我那些軟體業的朋友們也搞不懂。

直到最近,我為了找軟體工程師到我們公司開發機器學習相關產品,才突然對這件事情有了更深一層的領悟。

該找資深專家還是畢業生?

最近機器學習(Machine Learning)這個議題實在太紅了,所以我就像大部分的公司老闆一樣,心裡有很強的焦慮感。我原本打算用高薪僱用一個熟悉這個領域的工程師,先來研究如何將機器學習技術應用在我們的產品上面。結果我問了一些專家,他們都說這個領域最近的發展很快,資深工程師往往反而不了解,所以要找就乾脆找一些剛畢業的、在學校學過機器學習相關課程的資訊系畢業生。

但是我們在網路上刊登的求才訊息放了一個多月,一直都沒有什麼好手來應徵。我又去問了一些朋友,才知道機器學習這個議題真的實在太紅了,所以大部分剛畢業的好手都被硬體公司用高薪網羅了。

於是我就開始在網路上找資料,自己研究機器學習技術。結果我研讀了一、兩個禮拜,發覺這個領域雖然在最近有著長足的進步,但基本原理跟二、三十年前沒有什麼大改變,像是Neural Net、Convolution、Recursion、Machine Learning等等,都是我以前就很熟悉的技術與概念,感覺上就像是跟二、三十年前認識的老朋友重逢一樣,非常的親切。

於是我轉念一想,既然這些基本觀念我都懂,只是不熟悉一些新的機器學習開發工具而已,那我為什麼不花個五十萬台幣外包,請幾個資訊系在學的大學生或是研究所學生,花兩、三個月幫我們把開發環境架設起來,然後再由我們公司現有的資深軟體工程師接手就好了?而對接這個外包案的學生們來說,五十萬台幣也許是一筆大錢,但對我們公司來說,這比起我們自己花一百萬年薪請個菜鳥工程師來做開發,至少可以省五十萬台幣以上。

但想來機器學習真的是太紅了,所以過了一兩個禮拜,我們開價五十萬台幣要找人外包的事情也還是沒有進展,一直沒有辦法找到合適的人選。萬般無奈之下,我只好自己買了一本書,嘗試自己架設做機器學習產品開發所需要的軟體開發環境,像是Python、TensorFlow、 Keras等等。

沒想到,我自己花不到兩個小時的時間,就很順利的把這些開發環境架設起來了。而我自己用一些零散的時間寫一些程式,居然也在兩個禮拜內取得了不少進展,至少,我們已經證明了我們原先的產品設想是可行的。

我心中得意非凡,不但在實驗上得到了很多的樂趣與成就感,同時也覺得又省下了五十萬台幣。

當資訊相關科系畢業生去硬體公司當軟體工程師

所以仔細想想,一個剛畢業的資訊相關科系學生,到硬體公司上班一定比來我們公司上班幸福多了。台灣大多數的硬體公司都很有錢,花得起高薪請工程師。而硬體公司的老闆通常每隔幾年就要像發燒一樣,決定大舉投資軟體業,同時接受媒體訪問,說台灣的未來在軟體,不在硬體。然後他們在網際網路剛興起的時候投資網際網路軟體公司,在APP當紅的時候轉投資APP軟體公司,在雲端運算紅的的時候轉投資雲端運算軟體,在大數據當紅的時候轉投資大數據軟體公司,而現在AI機器學習正紅,他們當然也要轉投資AI機器學習的軟體公司。

軟體工程師在大型硬體公司的軟體部門或是轉投資軟體公司工作,即使位階不高,也經常會有機會跟郭台銘、施振榮、林百里、施崇棠這種國際巨星等級的大老闆開會。在會議中隨便亂講也不會有事,因為那些硬體大老闆們通常不會懂這些軟體工程到底是在講什麼,他們只能不斷的點頭微笑,然後轉頭跟媒體記者們說,就是因為他們不懂軟體,所以更要給這些軟體工程師很大的創新與犯錯的空間。

而軟體工程師到我們這樣的中小型軟體公司上班,就只能跟我這種名不見經傳的老闆一起開會,而且對於技術的事情不能亂講。如果亂講,就算我能忍住不罵人,也很難忍住不發笑。

硬體公司的大老闆通常對軟體工程師很大方,他們給高薪,通常還會覺得很划算,因為這些軟體工程師帶來了一些他們公司原本沒有的技術,感覺上就是很厲害,邊際效益很高;而軟體公司的老闆通常對軟體工程師比較小氣,他們給薪水,通常都還要考慮軟體工程師本身的能力,他們只願意給有能力的軟體工程師高薪,而不願意給平庸的工程師高薪。

是好萊塢的龍套還是本土劇的天王?

軟體工程師到硬體公司上班,就像是台灣的演員參與美國好萊塢年度大片的拍攝一樣,不但薪水高,而且有算只是擔任個小配角或臨時演員、戲份不重,也會有機會跟國際巨星說上幾句話。就算他們的演技不好,國外的觀眾也會以為華人講話的表情天生就是這樣。

而軟體工程師到軟體公司工作,就像是台灣的演員在本土連續劇中演戲一樣,就算演的是主角還是第一男配角,也沒有什麼好向親朋好友炫耀的。而如果在戲中台語發音不標準,馬上就會被導演跟觀眾罵。

當然,雖然台灣的大型硬體公司在過去三十年來不斷的投資各種軟體事業,但他們好向也從來沒有做出過什麼偉大的軟體產品,也沒有拆分出什麼偉大的軟體公司。硬體大老闆們的軟體熱,通常過了幾年就自然退燒了。現在他們早已經忘了那些關於網際網路、APP軟體的投資,而對於雲端運算與大數據好向也沒有那麼熱衷了。

於是那些到大型硬體公司上班的軟體工程師,通常在五年、十年之後就會失寵,然後就會出來找軟體公司的工作,但是他們往往期望很高的薪水,卻只能做一些很基本的軟體開發工作,他們在硬體公司工作的那些年,軟體技術往往沒有什麼長進,甚至可能退步了。而原來他們所熟悉擅長的先進技術,通常也退流行了。

找那些在大型硬體公司工作多年的軟體工程師到軟體公司工作,就像是找那些在好萊塢大片中當過臨時演員的華人回來演本土劇一樣,總會覺得哪裡怪怪的。

所以說,一切都是非常合理的。台灣許多的軟體公司找不到合適的年輕工程師,而台灣許多的軟體工程師在中年之後遇到職涯瓶頸,這都是非常合理,而且可以解釋的。

只是在這所有合理的現象之下,我還是找不到有能力的年輕軟體工程師來幫我們公司開發機器學習相關產品,我還是必須跟幾個現有的資深工程師自己搞。

這實在很不合理啊。

關鍵字: #工程師文化
往下滑看下一篇文章
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網

為守護保戶資產,南山人壽集結客戶服務、數位、資訊三個部門的能量,自行研發「黃金眼 AI 防詐模型」,自 2024 年底完成開發後,截至今年 11 月已成功阻擋多起詐騙案件、攔阻金額累計逾新臺幣 900 萬元,並獲得 2025 數位金融獎等殊榮。

「黃金眼 AI 防詐」模型為什麼可以有效防詐、更好守護保戶資產?

南山人壽客戶服務資深副總經理李淑娟面帶微笑地解釋:「『黃金眼 AI 防詐』是透過龐大的保戶資料結合前線客服的實務經驗建構而成的模型,不僅克服了壽險業交易頻率低且詐欺樣本極度不平衡的挑戰,還能夠偵測在臨櫃辦理保單借款或解約的高風險個案,讓客服人員可以主動提醒與關懷,有效降低詐騙風險,守護客戶資產安全與信任。」

南山人壽
南山人壽客戶服務資深副總經理李淑娟指出,詐騙手法快速進化,南山人壽研發黃金眼AI防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。
圖/ 數位時代

從詐保到詐財,壽險業面臨的風險加劇

過往,壽險業者面對的主要風險是保險詐欺,例如,透過偽造事故情節、虛構醫療紀錄等方式詐領保險理賠金,然而,隨著科技迭代與詐欺集團的組織化、專業化,這類手法已快速進化,從「偽造病歷、輕病久住、醫療共犯」等傳統模式,轉向結合數位科技與精準話術的跨領域詐財操作。

這一波詐欺風險不僅滲透力強、具備高迷惑性,也直接影響保戶資產安全。例如,詐欺集團利用假冒理賠諮詢等方式竊取保戶個資,再一步步誘導客戶辦理解約或申請保單借款,最後要求將資金匯到不明帳戶等,壽險業者面臨的風險範圍也從「詐領保險理賠」延伸到「詐騙保戶資產」。

李淑娟資深副總經理進一步指出,南山人壽每年要處理逾 35 萬件解約與借款案件,很難單憑人力在海量案件中精準辨識高風險個案。「為有效防堵詐欺事件,南山人壽除開發 AI 模型辨識詐保事件,更進一步研發黃金眼 AI 防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。」

南山人壽以黃金眼 AI 防詐模型守護保戶資產

在打造黃金眼 AI 防詐模型時,南山人壽面臨兩個挑戰:首先是壽險的交易頻率低,導致資料稀缺;其次,是詐欺樣本比例高度失衡,導致 AI 很容易誤判。為化解這些挑戰,南山人壽整合保戶行為、保戶與保單側寫資訊與情境因素等多模態資訊進行模型訓練,爾後,透過集成學習(Ensemble Learning)整合多個不同觀點的「專家模型」共同判讀,提升模型判斷準確性。

南山人壽數位專案經理蔡其杭表示:「以多模態數據源跟集成學習的策略打造黃金眼 AI 防詐模型後,我們除了將模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級,協助客服人員快速識別高風險個案,主動介入並阻斷詐騙,更透過『自適應演進』與『外部資源擴充』兩個機制,持續優化模型辨識精準度。」

南山人壽
南山人壽打造黃金眼AI防詐模型,將模型串連至臨櫃客服系統,以直觀的紅、黃、綠三色燈號,即時呈現保戶的風險等級、協助客服人員快速識別高風險個案。
圖/ 數位時代

「自適應演進」指的是,客服人員會依據模型亮起的燈號,結合系統提供的關懷提問表,向臨櫃辦理解約或借款的保戶進行關懷詢問,如資金用途、是否接獲可疑來電等,藉此釐清是否存在異常情況,並將相關結果回貼標籤,作為後續調校模型的關鍵訓練素材,讓黃金眼 AI 防詐模型越用越精準。

「外部資源擴充」則是透過更多元的外部數據強化模型的防詐能力。例如南山人壽與內政部警政署刑事警察局簽署反詐騙合作備忘錄(MOU),在合規架構下共享情資,協助核對保戶是否曾有詐欺通報紀錄。蔡其杭補充,南山人壽目前正與電信業者合作,將其超過 1,400 項特徵因子導入模型,有效提升模型燈號判斷的靈敏度與可靠度,使黃金眼 AI 防詐成為更全面的金融詐欺偵測引擎。

蔡其杭表示,詐騙的手法日新月異,AI 阻詐模型除了能準確識別可疑的高風險案例外,更重要的是具備與時俱進、持續調優模型能力和效果的機制;如同維持客戶服務的品質一樣,刻不容緩。

南山人壽
南山人壽數位專案經理蔡其杭表示,黃金眼AI防詐模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級。
圖/ 數位時代

李淑娟表示:「隨著模型的持續優化,黃金眼 AI 防詐模型的應用範疇將從目前的『臨櫃防堵』延伸到『全通路、跨產業、事前預警』的防禦機制,以事前預警的方式防堵詐欺事件。」舉例來說,當保戶撥打電話詢問保單借款或解約時,系統就會開始運作、提前識別風險,針對透過手機 APP 或網路平台辦理業務的數位客群,系統也會即時偵測,當出現高風險行為時即會立即展開關懷提問。

不僅從科技著手,南山人壽以 SAFE 逐步提升防詐安全網

值得特別注意的是,南山人壽並未將防詐視為單一的科技工程,而是從 SAFE–Skilled(防詐訓練)、Awareness(全民防詐)、Fintech(科技運用)、Engagement(聯防合作)–四個構面打造更完整的防護機制。

在專業技能方面,南山人壽不僅協助相關人員熟悉黃金眼 AI 防詐模型的操作模式,也持續透過內部教育訓練,以及跟刑事警察局等單位合作舉辦的工作坊等方式,全面提升員工識詐、阻詐的能力,達到 AI 人機互動的阻詐聯防保護網。

在防詐意識宣導方面,南山人壽除於全台 18 個分公司櫃檯播放刑事警察局提供的反詐騙影片,並在櫃檯明顯位置放置防詐文宣,協助來訪保戶掌握最新詐騙趨勢;更主動走入偏鄉、校園與新住民社群,並針對聽語障人士製作友善素材,以多元形式推廣防詐知識,降低詐騙事件發生的可能性。

在公私協力方面,李淑娟表示,南山人壽積極培育、鼓勵每一位壽險業務員成為「防詐大使」,在拜訪客戶時主動觀察各種異常徵兆,例如可疑的投資文宣或陌生人的頻繁出入,並將這些現場蒐集到的「軟性數據」提供回公司,作為模型判斷的補強資訊,以提升事前預警效果。

為了更好的保護高齡與失智等高風險族群,南山人壽也積極推動「保單安心聯絡人」機制,鼓勵保戶指定第二聯絡人,在其申請保單借款或終止契約時,可以主動通知聯絡人介入確認,降低詐騙風險;此外,亦針對受詐保戶提供「喘息關懷服務」,以低利紓困貸款協助保戶在遭遇詐騙後仍能穩定度過財務壓力,將防詐保護從事中攔阻延伸到事前預警與事後援助兩個層面,樹立產業新標竿。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓