[AI洞見]以科學的方式赤裸裸地剖析AI--混沌初開
[AI洞見]以科學的方式赤裸裸地剖析AI--混沌初開
2017.12.20 | 微軟

今天我的題目是「智慧簡史」(The Brief History of Intelligence),我想談一下什麼是人工智慧,什麼是人的智慧。我想把AI赤裸裸地剖析在大家面前。

可能大家也聽過不少關於AI的演講,每個演講人背後可能都有某些目的。我今天是抱著科學的目的,談一下AI到底能做什麼、今天能做什麼、未來能做什麼,沒有保留地剖析給大家。

AI的誕生

今天AI已經紅到不能再紅,包括美國政府、中國政府都非常重視,甚至都要制定政策和策略。過去這兩三年可以說是AI的一個爆發點。當然也有不少關於AI的擔憂。1950年,《時代》雜誌就已經提出了AI的某種威脅:「現代人已經適應了擁有超人肌肉的機器,不過擁有超人大腦的機器還是挺嚇人的。設計這些機器的人試圖否認他們正創造像他們自己一樣擁有智慧的競爭者。」( Time, January 23rd, 1950)

AI簡史1.jpg
伊隆.馬斯克和霍金
圖/ 洪小文

今天伊隆.馬斯克說AI要毀滅人類;但是1950年這種議論就有了。1950年的時候,二戰結束才五年。當年做電腦是二戰時為了造原子彈,每台電腦都要比一個房間大,全世界也不超過十台。這時就已經有人擔憂,以後造的電腦比人類聰明怎麼辦?我們人類一直就對智慧充滿了期待,而且非常怕受到傷害。

返回來說,為什麼AI會這麼熱?第一個理由很簡單,沒有人願意天生愚蠢(Natural Stupidity),那就只能做人工智慧(Artificial Intelligence)。這個略帶玩笑,真正的理由其實是人類有智慧(Human Intelligence)。人類之所以可以主宰萬物、主宰地球甚至宇宙,靠的就是腦子。如果你看《人類簡史》或者《未來簡史》,尤其是《未來簡史》提到的都是AI,大資料。

那麼,什麼是AI?

AI嚴格說起來是61年前的1956年發生的,但是這個定義今天已經被打破了。因為我們學AI的人非常清楚,在學術界AI是有嚴格的定義的,但在今天,我可以說任何好的而且可以用電腦實現的事情都變成了AI。比如,只要你發明一個新的網路通訊協定或者演算法,大家覺得你的想法非常好,最終由電腦實現了,不就是人工智慧嗎(人的智慧最終通過電腦實現了)?所以,今天從公眾角度,只要是一個好東西,能被機器實現,就是人工智慧。

但我覺得,我們人有時也會被洗腦。今天AI領域炒得很熱的一個東西是無人駕駛。大家覺得非常難。無人駕駛還被分成了一到五個水準,最高的一級就是沒有司機。但是1912年,辛亥革命那一年,就有了人類的第一個飛機的自動駕駛(Autopilot)。我想,自動開飛機,不敢說一定比開車難,但是也不見得會比自動駕車簡單。那為什麼大家不說飛機的自動駕駛是AI呢?

AI早期的英雄們

講AI的歷史,我們可以先從電腦的歷史談起。

電腦是從哪裡來的呢?今年是圖靈獎60周年,前幾年是圖靈100年的誕辰。圖靈當然是非常了不起。他提出一個假設(Church–Turing thesis),任何可以被計算的東西(用演算法描述)就可以用圖靈機去算。這個是很了不起的,雖然無法證明。所以圖靈在那時就覺得,電腦應該可以模擬我們大腦裡所有的想法(Computers can simulate any process of formal reasoning),也就是為什麼在那個時候就有了圖靈測試(Turing Test)。

AI簡史2.jpg
AI的開山鼻祖們
圖/ 洪小文

但是真正AI這個字眼,要等到1956年,在達特茅斯(在波士頓附近的一個很偏僻的小鎮上,也是常青藤的學校之一)舉行的一個夏季會議上提出的。當時有五個人參加,MIT的John McCarthy和Marvin Minsky,CMU的Allen Newell和Herbert Simon以及IBM的Arthur Samuel,這五個人就是AI的開山鼻祖。

這五個人除了Arthur Samuel以外,全部拿了圖靈獎。其中,Herbert Simon在中國也很有名,他同時拿了圖靈獎和諾貝爾經濟學獎。他和Allen Newell兩個人創立了卡耐基梅隆大學(CMU)。其實CMU電腦科學系就是這兩個人為了做AI而成立的。當時,他們從美國軍方的國防高等研究計畫署(DARPA, The defense Advanced Research)拿到了一些資助。

John McCarthy是我的師祖,我的老師Raj Reddy是他的學生。John McCarthy是真正把人工智慧取名叫做AI的人。現在公認的AI之父有兩種說法,大部分的說法是John McCarthy;也有人說是圖靈。John McCarthy那時是在MIT,後來到了斯坦福。所以為什麼說MIT,斯坦福,CMU到今天都是AI的重鎮,更別說當年了,因為當時就只有這三家,都和這些人有關。

Marvin Minsky1956年時還在一個小公司做事,並不在MIT,直到1956年開了達特茅斯會議之後,他才被John McCarthy邀請到了MIT。結果,John McCarthy後來自己去了斯坦福成立了AI實驗室。

我自己是在1984年開始學習AI,我到CMU也是因為AI。當時我讀AI的論文的時候,基本上都讀不懂,有幾個原因。第一個,自己的英文不好,尤其是在當年的條件下;然後AI的論文裡面通常沒有數學公式,都是文字;然後這些文字裡很多是認知心理學,我當時根本讀不懂。後來才覺得讀不懂是因為一些很簡單的東西故意用很複雜的文字寫出來。第二點是,這些文章裡面很多是講腦,我也讀不懂。正是因為讀不懂,也就覺得這個東西非常高深,所以一定要好好學習。

到目前為止,AI總共有八個人,Marvin Minsky (1969), John McCarthy (1971), Allen Newell (1975), Herb Simon (1975), Edward Feigenbaum (1994), Raj Reddy (1994), Leslie Valiant(2010), Judea Pearl(2011)得了圖靈獎,比例還是蠻高的。前四個人在1975年以前就得了圖靈獎,1975年以後圖靈獎就不頒給AI了。一直到1994年,幾乎20年以後,我老闆和Edward Feigenbaum又得了圖靈獎。最近的Leslie Valiant,Judea Pearl也得了圖靈獎,所以AI又解凍了。所以從得圖靈獎,也能看得出AI研究的冷熱。

1990年前的AI

我當年學習的AI,和今天是很不一樣的。早期的AI都是在學習如何模擬人的智慧行為,可以叫仿腦,這是它的主軸。我特地翻閱了下我大學的教科書,上面還有我的筆記。這些書在當年的1980年代是非常經典的,總共三本,分別由MIT、CMU,斯坦福出的。這些書都已絕版,連亞馬遜也找不到,非常珍貴。當年教的AI的這些東西,現在很多人都已經沒有人能談了。但其實最近AI的復興,包括未來AI要如何往前走,都必須要回去研究這些東西,否則是絕對做不到人的智慧的這個地步的。

當時研究什麼呢?

其一是知識表示(Knowledge Representation)。我們說隔行如隔山,比如學藥學的、學醫學的,學電腦的、學化學的,每一個行業都是不一樣的,知識表示了之後還要滿足約束條件求一個解(Constraint satisfaction),人很多時候是在做這個事情。當年,搜索也是非常大的一支(包括State-space representation、pruning strategy、深度搜索、廣度搜索、beam search、Game tree search、Alpha-beta搜索等),今天的互聯網因此受益很多。雖然當時做這個時他們並沒有想到互聯網,當時想的是如何用搜索來實現智慧。特別是包括Game Tree Search做電腦下棋這件事情,一直以來都是AI研究的。早期最早叫Checkers,電腦很快打敗了人;後來做象棋,後來做圍棋,如今所有棋手都下不過機器人。

當時甚至有專門的程式設計語言,是為AI而設計的,做AI的人就要學這些語言。有一個叫Lisp,還有一個叫Prolog。我想今天已經沒有人聽過這些東西了,但是在當年是不得了的,做AI都要學這些。

然後還研究什麼呢?認知心理學,非常重要。我們講AI,很多都是認知。有一個詞叫Heruristics,今天已經沒有人用這個詞,其實還真是AI。因為Heruristics是在你沒有資料的時候,或者是很少資料的時候,要用你的直覺來解決問題。

AI簡史3.jpg
GPS的創造者Herbert Simon和Allen Newell
圖/ 洪小文

還有的研究是做認知的模型(Cognition Modeling),比如GPS。當然不是指GPS定位,而是一般求解器(General Problem Solver)。難道是什麼問題都能解麼?Allen Newell和Herbert Simon得圖靈獎就是因為GPS。而且你真的去讀論文的話,很厚。它甚至一語兩思,把這個東西轉一下,去研究行為經濟學也可以,所以Herbert Simon又拿到諾貝爾經濟學獎。

還有一種模式叫產生並測試(Generate and Test),大概的意思就是我們所謂的大膽假設、小心求證。這些認知的模型看起來很神,基本上它就是把難的東西用資料來表示。但是人的確是這樣做的,尤其是到後來,特別是語義、認知,真的很多時候都是在做產生並測試,這個模型本身是沒錯的。

接下來的一項研究要講講我老闆。他拿圖靈獎,一方面是因為他是語音大師(這個可能也有我的一點貢獻);另外一個導致他得圖靈獎的叫做黑板理論。當年搞這些認知的模型的是非常重要的,甚至可以得圖靈獎。

另外有研究涉及Semantic (Frame) 我們今天還在用。今天做Siri,微軟做小冰小娜,或者做Google助手、百度度秘用的是這個技術。

還有一個東西在當年非常紅,叫做專家系統。而且最早期的專家系統很多東西應用在醫療,很有名的叫MYCIN (medical diagnosis),就是傳染疾病了,靠一些規則去診斷。

當然還有專門研究感知的,比如,我就是作語音和自然語言處理。那語言怎麼做呢?就是有點像大家學英文的文法。但是文法都有例外,一有例外就搞不定,所以這些東西進展都不是那麼好。

還有就是電腦視覺,今天也紅得不得了,比如刷臉。可是在當年的電腦視覺和所謂的機器人,在當時是非常可憐的一個項目。當年都是只能研究玩具樣的問題(toy domain),做的東西都是方塊世界的理解(Block-world understanding):就是有一堆磚塊,磚塊是這樣的狀態,怎麼樣變成那樣的狀態,來回搬磚塊。最多了不起了研究一個桌子。一輩子做電腦視覺,就研究椅子、研究桌子——還不是兩個都研究,只研究一個。當年能做的只有這些東西。

然後是機器學習。機器學習大概是在1980年代開始,但是當時的學習也是研究人怎麼學習,而且有一大堆機器學習。今天的機器學習變得很單一,就是深度神經網路一個,當年有很多種:比如有被告知和指令學習(Learning by being Told & from Instruction);有通過改正學習(Learning by Correcting Mistakes);有基於訓練神經網路的學習(感知器)等等。1990年以前的AI,和今天有很大的不一樣。

文章轉載自微信公眾號知識份子

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

往下滑看下一篇文章
補齊未來電子業版的關鍵拼圖!矽眾科技以高階溫度補償驅動晶片IP,助攻高階AI與車用市場
補齊未來電子業版的關鍵拼圖!矽眾科技以高階溫度補償驅動晶片IP,助攻高階AI與車用市場

你是否曾好奇,為何今日的手機能在艷陽下持續運作,而電動車也能從零下的極地順利駛出,精準感測周遭環境?

看似尋常的應用場景背後,其實隱藏著一顆默默進行的「溫度偏移校正」關鍵晶片。這類負責環境感知、並能進行溫度補償的「驅動晶片」,是電子元件穩定運作不可或缺的一環 。然而,這塊高階驅動IC的研發,長期以來卻是臺灣在全球半導體供應鏈中相對薄弱的環節,使得臺灣眾多在零組件領域傲視全球的廠商,在高階應用市場中受制於人。

矽眾科技鎖定高階溫度補償驅動晶片IP,要替臺灣補足產業鏈缺口

「我們臺灣在零組件領域,其實有很多世界第一,例如在全球市佔率領先的振盪器,但始終難以打進高階產品線,就是因為缺少能驅動這些零組件的高階晶片。」矽眾科技創辦人陳世綸開宗明義地指出產業痛點。他解釋,許多臺灣零組件廠商雖擁有卓越的製造能力,但在高階驅動晶片上卻高度仰賴美日大廠,而國際大廠往往不願開放最先進技術,臺灣廠商因此缺乏在價值鏈高附加價值鏈段的話語權,只能在低利潤的紅海市場中競爭。如何打破技術封鎖、強化自主關鍵技術,成為臺灣電子產業邁向國際高端市場的關鍵課題。

而矽眾科技的成立,正是為了補上這道斷鏈而生。作為少數專注零組件驅動晶片矽智財(Silicon Intellectual Property , IP)開發的企業,當AI運算與電動車市場爆發性成長,矽眾科技以可重複授權、穩定可靠的矽智財解決方案,成為產業鏈中不可或缺的關鍵推手。陳世綸說當高階電子產品對穩定性的要求日益嚴苛,就更考驗元件必須能在高溫、低溫甚至劇烈溫度變化下維持效能。這正是「溫度補償」(Temperature Compensation)技術的關鍵價值所在。

「矽眾科技的IP 就像貼心的助理,提醒元件「冷了多穿衣服、熱了脫下外套」,透過溫度補償即時調整參數,即使處於零下 40 度的嚴寒或高達 140 度的酷熱環境,訊號依然能保持精準一致。」陳世綸生動地形容 。

透過開發板進行晶片溫度感測與數位校準測試,確保 MEMS 感測器在不同溫度下依然能維持精準運作。
透過開發板進行晶片溫度感測與數位校準測試,確保 MEMS 感測器在不同溫度下依然能維持精準運作。
圖/ 數位時代

他進一步解釋,晶片內整合了類比的溫度感測器來偵測環境溫度,並將數據傳送給數位電路進行判斷與分析,數位電路再發出指令,精準校準MEMS(Micro-Electro-Mechanical Systems) 感測器的參數,確保其在不同溫度下都能提供正確值,避免因溫度變化導致的誤差和功能喪失,例如手機熱當或汽車失靈 。這種「類比感知+數位判斷校準」的整合能力,正是矽眾科技在高階驅動晶片領域所構築的技術壁壘。

陳世綸表示,矽眾科技之所以選擇IP這條賽道,正是看準了其在產業中的獨特價值。作為IP公司,其設計模組能適用於從0.18微米的成熟製程到小於10奈米的先進製程,客戶可根據自身產品需求快速整合,大幅縮短開發週期。這種靈活性,不僅讓矽眾能服務更廣泛的客戶群,也賦予了臺灣零組件廠商快速切入高階市場的機會。

晶創IC補助計畫奧援,矽眾科技以IP挺進高階市場布局全球

然而,IP的研發是條燒錢的漫漫長路。陳世綸坦言,由於IP的價值在於其穩定性與可重複使用性,但要達到這個門檻需反覆測試與驗證 。他透露,矽眾科技的IP中,每個驅動電路區塊都必須經過數次的設計定案(tape-out)與實體測試,而每次的成本都高達數萬至數十萬美金不等。「沒有政府的計畫支持我們根本做不到,」陳世綸感念地表示,而他口中的計畫正是由經濟部產業發展署所推動的「驅動國內IC設計業者先進發展補助計畫」(以下簡稱晶創IC補助計畫),讓團隊得以持續突破與精進,追求每個電路區塊的極致穩定性與精準度。

晶創IC補助計畫的資金補助,不僅加速矽眾科技的測試進程,也成功讓這個具備溫補能力的高階驅動晶片IP跨入車用與AI市場 。陳世綸說明,此IP主要針對高階MEMS零組件,特別是應用於5G手機、低軌道衛星、AI伺服器中需要高頻率、高準確度且耐溫的振盪器 。同時,它也符合嚴苛的車用認證,確保車載系統在極端溫度下的穩定性 。此外,此IP亦可支援手機中的胎壓偵測、高度偵測等MEMS感測器,因未來的電子產品將大量使用這類元件,且需具備溫度補償能力以維持精準度 。

如今,矽眾科技已與美加、日本、歐洲及臺灣等國內外大廠展開合作。陳世綸欣喜地表示,許多客戶原本因買不到關鍵驅動晶片而受限於低階市場,現在矽眾科技的IP補上了這一塊,他們也終於能進軍高毛利產品線。目前,已有合作夥伴將矽眾的高階驅動晶片IP導入車用認證流程,未來甚至可望進一步進入低軌道衛星與醫療穿戴市場。

矽眾科技站穩利基市場,與全球MEMS企業共舞

有了晶創IC補助計畫的挹注,矽眾科技更能以關鍵 IP 、溫度補償技術,帶領團隊協助臺灣半導體產業鏈從
有了晶創IC補助計畫的挹注,矽眾科技更能以關鍵 IP 、溫度補償技術,帶領團隊協助臺灣半導體產業鏈從「代工製造」轉向「設計賦能」。
圖/ 數位時代

比起一家公司從頭到尾包辦整顆IC的傳統模式,IP公司更像是站在舞臺後方的設計者,協助每一位客戶量身打造表演服、背景道具與燈光效果,讓他們能快速踏上國際舞臺。「我們不做整套產品,但我們讓臺灣的零組件有機會躋身高階應用,不再只是代工。」陳世綸堅定地說,矽眾科技的策略,是站在面對未來5到10年需求的位置上,看見即將來臨的市場缺口,然後在它出現前就先把技術準備好 。

「我們希望矽眾科技未來是跟著全球 MEMS 企業一起共舞,」陳世綸生動的描繪出公司的願景,矽眾科技透過獨特的IP商業模式、關鍵的溫度補償技術以及晶創IC補助計畫的強力奧援,不僅成功在利基市場中站穩腳步,更為臺灣半導體產業開闢了一條高值化的新路徑。這項成果不僅是矽眾科技自身的里程碑,也證明臺灣的IC設計實力,已在全球高階半導體供應鏈中找到了新的戰略位置,從過去的「代工製造」轉向「設計賦能」,引領臺灣零組件產業邁向更高層次的全球市場競爭力。

|企業小檔案|
- 企業名稱:矽眾科技
- 創辦人:陳世綸
- 核心技術:5G通信、人工智慧、物聯網、車用電子矽智財(IP)設計服務
- 資本額:新臺幣1仟700萬元
- 員工數:6人

|驅動國內IC設計業者先進發展補助計畫簡介|
在行政院「晶片驅動臺灣產業創新方案」政策架構下,經濟部產業發展署透過推動「驅動國內IC設計業者先進發展補助計畫」,以實質政策補助,引導業者往AI、高效能運算、車用或新興應用等高值化領域之「16奈米以下先進製程」或「具國際高度信任之優勢、特殊領域」布局,以避開中國大陸在成熟製程之低價競爭,並提升我國IC設計產業價值與國際競爭力。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓