在現實世界拓展機器學習應用的三種方法
在現實世界拓展機器學習應用的三種方法

稱為NeurIPS(神經資訊處理系統會議)的全球人工智慧領域盛會剛剛結束,出席者人數創下歷史新高,即使採取抽票制也難以容納。9,000張門票在12分鐘內售完,顯示了世界各地對AI興趣的爆炸性增長。

然而,儘管AI創新走出學術界,開始在產業界出現,大多數公司在落實AI解決方案時仍然面臨困難。在NeurIPS向AI世界發出警鐘的同時,機器人產業似乎對機器學習(ML)解決方案落地有更務實的考量。

推薦閱讀:AI機器人將會如何顛覆製造業?

我任職的公司提供機器學習軟體,使工廠和倉庫中有更多具自主性和更靈巧的機器人。為了彌補技術和產品落地中間的差距,我們和機器人公司與系統集成商密切合作,將最前端的機器學習研究產品化。

日前我飛到東京,參加全球最大規模的機器人展會「國際機器人展覽會」(IREX);在這裡,領先的機器人公司展示了將AI以及ML應用在機器人領域的各種方法。

從「自動化」到真正「自主化」,AI造就的機器人技術領域,最大成果是從原先的「自動化」(工程師藉由程式設計編寫規則,讓機器人遵守)邁向了真正的「自主學習」。

在先前的文章中,我談到AI如何造就新一代機器人2.0時代。傳統機器人主要用於大規模生產線,工程師事先編寫程式,讓機器以高精度、高速度執行相同的任務,但機器本身無法對變化或意外做出反應,因此彈性有所不足。

然而,隨著消費者對客製化產品需求的增長、和勞動力的不斷萎縮,我們需要更加自主和靈活的機器人。

也因此,有公司開始嘗試將ML應用於機器人領域,使新一代的機器人能夠處理傳統機器人無法完成的供作。在IREX中,我們看到了ML用於改善機器人的視覺、控制、以及提高真實使用案例的擴增性。

【延伸閱讀】Robotics 2.0(1)— AI重新定義機器人

機器視覺:在識別、可擴充性和自主學習方面的突破

即使是最先進的3D結構化光相機也難以識別具有透明封裝、反射或深色表面的物體,因為光線會散射或被吸收。

由於物品相互重疊,雜亂堆放的場景帶來了更多的挑戰。這就是為什麼大多數製造商都使用振動台,或零件進料器來分散物品的原因。

此外,傳統的機器視覺系統不夠靈活:你需要通過事先上傳每樣物品的3D 模型來登錄物件,以便後續進行影像及物件本身的匹配。只要過程中有任何一個小變化,都必須重新登錄物件、或是修改程式設計。

但是現在,隨著在深度學習、語義分割和場景理解等領域的進步,我們逐漸可以用一般相機來識別透明的、或是會反光的包裝。

在FANUC的展位上,「LR Mate 200iD」拾箱機器人利用深度學習演算法、以及3D視覺感應器,來示範拾取隨機放置在一個箱子裡的相同的金屬零件。FANUC表示,由於他們的系統可以即時執行3D圖像及物件比對,所以不需要預先登錄。

在FANUC展台旁邊的川崎重工(KHI),則利用來自Photoneo和Ascent兩家新創公司的ML技術,展示了類似的隨機物件揀選方案;在另外一邊,KHI則與Dexterity公司合作,展示了機器人可以同時處理、搬運各種尺寸盒子的自動處理存貨解決方案。

在另一個展覽大廳,日本機器手臂大廠DensoWave以及舊金山的ML新創公司OSARO首次展示了「物件方向辨識」(Orientation)功能,讓機器人可以從雜亂的箱子裡取出透明瓶子;不僅能夠識別最佳拾取點,而且還能識別物體方向、並將瓶口朝上放上輸送帶。

DensoWave機器人事業部總經理Yosuke Sawada評論:「OSARO新開發的『定向』功能是客戶一直在等待的技術之一。此一令人興奮的新功能,有助於識別對機器人較為困難(例如透明)的物品,並提高操作員和工廠自動系統的揀選率。」

在這項展示中,使用的瓶子是完全透明的,因此很難用傳統的機器視覺感應器識別;而且,過去還沒有其他公司展示過類似的功能。

這項讓技術機器手臂不僅可用於簡單的拾取和放置,還可用於更複雜的零件裝備(kitting)、包裝(packaging)、機器裝載(machine loading)、以及裝配(assembly)等工作。

機器控制:智慧放置和品項處理

作為人類,我們從出生起就不斷練習撿拾和放置各種物品,因此可以不假思索就本能地完成這些工作。但是機器沒有這種經驗,必須重新學習這些任務。

尤其是在對產品包裝特別要求的日本市場,各項商品都需要被精心包裝,確保物件和外包裝的完整性,沒有任何缺損。

利用ML,機器現在可以更準確地判斷深度。ML模型還可以通過訓練學習,自動判定物體的方向和形狀,例如杯子是朝上或向下,或處於其他狀態。

物件建模或體素化可用於預測和重建 3D 物件。它們使機器能夠更準確地預測實際物品的大小和形狀,從而將物料放置在所需位置。

這些技術使機器能更準確預測實際物品的大小和形狀,從而將物料放置在所需位置;因此,也讓以產品品項(SKU)為基礎的處理方式得以實現:機器人可以根據物品的脆弱或易碎程度,選擇將物品輕輕放下、或是快速放置。

因此,我們可以藉由自動改變處理方式,讓系統處理量最佳化,而又不會損壞任何物品。

在展會中,也有些公司也開始在運動規劃中,嘗試使用強化學習或機器學習技術。例如日本新創Acsent展示了一段利用「強化學習」來組合兩個部件的影片;而機器手臂大廠「安川」(Yaskawa)也談到了在路徑規劃中使用機器學習的潛在好處。

但是,如果上述的機器學習改進,需要大量資料和長時間的訓練,就會造成在實際執行上的困難。在機器人和自動駕駛汽車等實際應用中,獲取訓練資料既有難度、成本也相當昂貴;這就是為什麼我對於IREX中提及的資料效率(data efficiency)問題特別關注。

適用於現實世界的可擴充性:資料效率

Yaskawa去年為開發工業機器人AI解決方案而成立的新公司「AI Cube Inc.」(AI3),在IREX的發表會中推出了為企業將機器學習模型數位化的工具「Alliom」。
根據AI Cube的說法,Alliom 提供了一個模擬環境(simulation),用於進行資料擴充(data augmentation)、並生成類似真實物件的合成資料(synthetic data)。

Yaskawa利用Alliom加快了ML模型隨機揀料的訓練過程,並希望在不久的將來,能將該解決方案擴展到各種其他應用之中。

這也表示,機器人產業已經超越了僅能引人注目的ML演算法,而開始考慮實際應用支援ML的機器人。ML解決方案不僅需要能夠成功運作,還必須能有效跨越各種使用場景、擴展用途,否則客戶很難有足夠誘因來引進這類系統。

結語

在上一篇文章中,我提到機器人公司正面臨「創新困境」:他們意識到創新的迫切需要,但仍然需要照顧他們的核心客層,也就是需要高速度、高精度工作能力的汽車業和製造業公司;然而,相對於其他市場對靈活性要求較高、也需要機器人能自主學習識別和處理各種元件,這一點是互相矛盾的

在IREX,我們看到機器人巨頭與KHI與Photoneo、Dexterity、Ascent、DensoWave與OSARO、FANUC、以及Preferred Networks等新創公司聯合展出,顯示機器人公司正在改變並擁抱AI創新。但是,這樣的改變速度夠快嗎?

在汽車業,我們看到汽車OEM製造商在邁向自動駕駛的過渡中,與特斯拉和Waymo等新進者展開競爭;然而到目前為止,我們還沒有看到科技巨頭進入機器人產業。

但Google、DeepMind、Facebook都已經在機器人相關的ML方面,投入了可觀的研究團隊,真正進入機器人產業可能也只是時間上的問題。

未來幾年之中,觀察AI將如何顛覆機器人行業、重新洗牌,將會是很有趣的事情。科技巨頭、機器人製造商、電子汽車製造商、AI新創公司,誰將勝出?

最後,誰又能鞏固在AI定義機器人時代的領導地位?

(本文由Bastiane Huang授權轉載自其Medium

責任編輯:陳建鈞

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場

往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓