機器學習告訴你:《紅樓夢》後40回到底是不是曹雪芹寫的?
機器學習告訴你:《紅樓夢》後40回到底是不是曹雪芹寫的?

前幾天燈神給我發了一篇文章,講的是用機器學習的方式來判定紅樓夢後40回到底是不是曹雪芹寫的。

圖說明

黛玉重建桃花社。畫家孫溫。圖片來自:Wikipedia


我這段時間也在自學Andrew Ng的機器學習課程,還差4週就能完成課程了。

電腦是一個很強調learning by doing的學科,於是我也來「學以致用」,用剛學到的SVM演算法來分析下雪芹老師到底有沒有寫後面的40回。

作為一個從沒看過紅樓夢的人,我的大致思路是這樣的:

  1. 受到《獵人》裡蟻王破解會長無敵招數的啟發,每個人的寫作都有些小習慣,雖然文章前後說的內容會有差別,但是這些用詞的小習慣不容易改變;

  2. 用開源的分詞工具把全書分詞(python的jieba分詞),然後統計詞頻。把出現頻率超過100次的詞語找出來,人工去掉一些可能因為文章內容造成前後出現不一致的人名、地名;

  3. 然後每一章按照2中的詞頻表,看這一章中出現這些詞語的頻率;

  4. 前80回、後40回各選15回作為機器學習的資料,讓機器學習這些章節的用詞特點,然後推算其他章節的用詞特點是屬於前80回呢、還是後40回;

  5. 如果機器根據這些用詞特徵推算的是否屬於後40回的結果跟實際的結果吻合,那麼就說明後40回的寫作風格跟前80回有很大不同,很可能是兩個人寫的;

好了,下面我儘量少涉及數學跟程式設計的知識,來一步步解讀機器學習是怎麼完成這個問題的。

生成全書的詞頻表

圖說明

我截取了其中一段的詞頻表。像寶二爺、黛玉笑這種涉及人物的詞語,可能前面戲份多、後面戲份少,所以就不選它們作為用詞習慣的特徵,而像忽然、故、只要、可不是這種承接性質的碎詞,就不太容易會受情節的影響,所以適合選出來作為用詞習慣的特徵。

最終,我按照出現從多到少排序,選擇了278個詞作為機器學習的用詞習慣。

將120回的詞頻進行統計

接下來我把每一回出現這278個詞的頻率統計出來,得到我們給機器學習的樣本。這個樣本的樣子大概是這樣的:

圖說明

比如以B行2列舉例,說明在第一回裡面「道」這個動詞,出現了36次。

通常我們在進行複雜的事情前,喜歡先簡化問題,或者給自己一些直觀的圖表,以便瞭解問題。機器學習也是一樣的。

我嘗試著在圖上把前80回和後40回習慣用詞出現的頻率畫出來。以第一回為例,x1座標代表「道」出現多少次,x2座標代表「說」出現多少次,x3座標代表「也」出現多少次......x280座標代表「則」出現多少次。

什麼?超過三維了,那人類的大腦可是沒辦法理解的啊。

沒關係,當我們用燈光照射一個立體的圖時,平面會有它的影子。這個影子雖然沒有立體圖的資訊這麼豐富,不過我們看影子還是可以猜出來大致的樣子。對於高緯度的問題,我們也可以用投影的方式來降低緯度。

雖然資訊損失了不少,不過能給我們一個直觀的感受。

圖說明

這個是120個章節的用詞習慣從278緯降到3維以後的圖,紅色+的點是前80回,藍色o的點是後40回。

從這個圖可以很直接地看到,確實在用詞習慣上有明顯的區別。就算我們沒有機器學習工具的幫忙,也可以大膽猜測後40回是出自於另外一個人了。

下面我們用機器學習來看精確一點的判斷。

機器學習

透過課程我大致瞭解了SVM的原理和簡化版問題的演算法實現,不過對於複雜問題我還是沒這個能力寫程式。於是用python的scikit庫來幫助我來完成這個預測。

演算法的步驟很簡單,前80回、後40回各選15個來餵給機器學習它們的特點,然後把剩下的章節輸入給機器,問它們屬於前80回還是後40回。

圖說明

看out[44]的結果,代表了機器預測這120回的用詞習慣到底屬不屬於後40回(0為不屬於,1為屬於)。

如果你看不懂上面的程式碼,沒關係。我告訴你結果好了。

機器在學習以後告訴我,如果我把隨便一章的用詞習慣告訴它、但不告訴它到底是前80回還是後40回,那麼機器有95%的把握能猜出它是不是後40回。

至此,我們可以很有信心地判斷它們的寫作風格不同。

那麼,問題來了,會不會因為是情節的需要所以導致寫作風格不同了呢?

情節不同會造成用詞習慣多大的差別?

好吧,那我再來做一個旁證。我把另外一部四大名著「三國演義」拿來分析,看看上部跟下部的用詞習慣會不會有比較明顯的差別。

圖說明

這個是三國演義的用詞習慣縮到三維以後的圖,紅色+代表前60部的用詞習慣,藍色o代表後60部的用詞習慣。

你可能會說,雖然中間交叉的地方比較多,但是還是可以看出來是有區分的。

可如果你比對一下跟紅樓夢的圖,你就會發現紅樓夢的差別會明顯得多。

圖說明

紅色+為紅樓夢前80回/三國前60回,藍色o紅樓夢後40回/三國後60回

最後,用機器學習的方式來說,如果我把三國演義隨便一章的用詞習慣告訴它、但不告訴它到底是前60回還是後60回,那麼機器有7成的把握猜對,這個準確度已經遠遠低於紅樓夢的95%的預測水準。

所以,我們用「三國演義」這個旁證來分析,即便是因為情節需要導致的用詞習慣差別也不應該這麼大。

所以,我們就更有信心說曹老先生沒有寫後40回了。

更多的機器學習有趣的玩法,我會在學習的過程中慢慢嘗試的。以上。

本文作者黎晨,原文刊載於他的微信公眾號:黎小晨想太多

關鍵字: #機器學習
往下滑看下一篇文章
補齊未來電子業版的關鍵拼圖!矽眾科技以高階溫度補償驅動晶片IP,助攻高階AI與車用市場
補齊未來電子業版的關鍵拼圖!矽眾科技以高階溫度補償驅動晶片IP,助攻高階AI與車用市場

你是否曾好奇,為何今日的手機能在艷陽下持續運作,而電動車也能從零下的極地順利駛出,精準感測周遭環境?

看似尋常的應用場景背後,其實隱藏著一顆默默進行的「溫度偏移校正」關鍵晶片。這類負責環境感知、並能進行溫度補償的「驅動晶片」,是電子元件穩定運作不可或缺的一環 。然而,這塊高階驅動IC的研發,長期以來卻是臺灣在全球半導體供應鏈中相對薄弱的環節,使得臺灣眾多在零組件領域傲視全球的廠商,在高階應用市場中受制於人。

矽眾科技鎖定高階溫度補償驅動晶片IP,要替臺灣補足產業鏈缺口

「我們臺灣在零組件領域,其實有很多世界第一,例如在全球市佔率領先的振盪器,但始終難以打進高階產品線,就是因為缺少能驅動這些零組件的高階晶片。」矽眾科技創辦人陳世綸開宗明義地指出產業痛點。他解釋,許多臺灣零組件廠商雖擁有卓越的製造能力,但在高階驅動晶片上卻高度仰賴美日大廠,而國際大廠往往不願開放最先進技術,臺灣廠商因此缺乏在價值鏈高附加價值鏈段的話語權,只能在低利潤的紅海市場中競爭。如何打破技術封鎖、強化自主關鍵技術,成為臺灣電子產業邁向國際高端市場的關鍵課題。

而矽眾科技的成立,正是為了補上這道斷鏈而生。作為少數專注零組件驅動晶片矽智財(Silicon Intellectual Property , IP)開發的企業,當AI運算與電動車市場爆發性成長,矽眾科技以可重複授權、穩定可靠的矽智財解決方案,成為產業鏈中不可或缺的關鍵推手。陳世綸說當高階電子產品對穩定性的要求日益嚴苛,就更考驗元件必須能在高溫、低溫甚至劇烈溫度變化下維持效能。這正是「溫度補償」(Temperature Compensation)技術的關鍵價值所在。

「矽眾科技的IP 就像貼心的助理,提醒元件「冷了多穿衣服、熱了脫下外套」,透過溫度補償即時調整參數,即使處於零下 40 度的嚴寒或高達 140 度的酷熱環境,訊號依然能保持精準一致。」陳世綸生動地形容 。

透過開發板進行晶片溫度感測與數位校準測試,確保 MEMS 感測器在不同溫度下依然能維持精準運作。
透過開發板進行晶片溫度感測與數位校準測試,確保 MEMS 感測器在不同溫度下依然能維持精準運作。
圖/ 數位時代

他進一步解釋,晶片內整合了類比的溫度感測器來偵測環境溫度,並將數據傳送給數位電路進行判斷與分析,數位電路再發出指令,精準校準MEMS(Micro-Electro-Mechanical Systems) 感測器的參數,確保其在不同溫度下都能提供正確值,避免因溫度變化導致的誤差和功能喪失,例如手機熱當或汽車失靈 。這種「類比感知+數位判斷校準」的整合能力,正是矽眾科技在高階驅動晶片領域所構築的技術壁壘。

陳世綸表示,矽眾科技之所以選擇IP這條賽道,正是看準了其在產業中的獨特價值。作為IP公司,其設計模組能適用於從0.18微米的成熟製程到小於10奈米的先進製程,客戶可根據自身產品需求快速整合,大幅縮短開發週期。這種靈活性,不僅讓矽眾能服務更廣泛的客戶群,也賦予了臺灣零組件廠商快速切入高階市場的機會。

晶創IC補助計畫奧援,矽眾科技以IP挺進高階市場布局全球

然而,IP的研發是條燒錢的漫漫長路。陳世綸坦言,由於IP的價值在於其穩定性與可重複使用性,但要達到這個門檻需反覆測試與驗證 。他透露,矽眾科技的IP中,每個驅動電路區塊都必須經過數次的設計定案(tape-out)與實體測試,而每次的成本都高達數萬至數十萬美金不等。「沒有政府的計畫支持我們根本做不到,」陳世綸感念地表示,而他口中的計畫正是由經濟部產業發展署所推動的「驅動國內IC設計業者先進發展補助計畫」(以下簡稱晶創IC補助計畫),讓團隊得以持續突破與精進,追求每個電路區塊的極致穩定性與精準度。

晶創IC補助計畫的資金補助,不僅加速矽眾科技的測試進程,也成功讓這個具備溫補能力的高階驅動晶片IP跨入車用與AI市場 。陳世綸說明,此IP主要針對高階MEMS零組件,特別是應用於5G手機、低軌道衛星、AI伺服器中需要高頻率、高準確度且耐溫的振盪器 。同時,它也符合嚴苛的車用認證,確保車載系統在極端溫度下的穩定性 。此外,此IP亦可支援手機中的胎壓偵測、高度偵測等MEMS感測器,因未來的電子產品將大量使用這類元件,且需具備溫度補償能力以維持精準度 。

如今,矽眾科技已與美加、日本、歐洲及臺灣等國內外大廠展開合作。陳世綸欣喜地表示,許多客戶原本因買不到關鍵驅動晶片而受限於低階市場,現在矽眾科技的IP補上了這一塊,他們也終於能進軍高毛利產品線。目前,已有合作夥伴將矽眾的高階驅動晶片IP導入車用認證流程,未來甚至可望進一步進入低軌道衛星與醫療穿戴市場。

矽眾科技站穩利基市場,與全球MEMS企業共舞

有了晶創IC補助計畫的挹注,矽眾科技更能以關鍵 IP 、溫度補償技術,帶領團隊協助臺灣半導體產業鏈從
有了晶創IC補助計畫的挹注,矽眾科技更能以關鍵 IP 、溫度補償技術,帶領團隊協助臺灣半導體產業鏈從「代工製造」轉向「設計賦能」。
圖/ 數位時代

比起一家公司從頭到尾包辦整顆IC的傳統模式,IP公司更像是站在舞臺後方的設計者,協助每一位客戶量身打造表演服、背景道具與燈光效果,讓他們能快速踏上國際舞臺。「我們不做整套產品,但我們讓臺灣的零組件有機會躋身高階應用,不再只是代工。」陳世綸堅定地說,矽眾科技的策略,是站在面對未來5到10年需求的位置上,看見即將來臨的市場缺口,然後在它出現前就先把技術準備好 。

「我們希望矽眾科技未來是跟著全球 MEMS 企業一起共舞,」陳世綸生動的描繪出公司的願景,矽眾科技透過獨特的IP商業模式、關鍵的溫度補償技術以及晶創IC補助計畫的強力奧援,不僅成功在利基市場中站穩腳步,更為臺灣半導體產業開闢了一條高值化的新路徑。這項成果不僅是矽眾科技自身的里程碑,也證明臺灣的IC設計實力,已在全球高階半導體供應鏈中找到了新的戰略位置,從過去的「代工製造」轉向「設計賦能」,引領臺灣零組件產業邁向更高層次的全球市場競爭力。

|企業小檔案|
- 企業名稱:矽眾科技
- 創辦人:陳世綸
- 核心技術:5G通信、人工智慧、物聯網、車用電子矽智財(IP)設計服務
- 資本額:新臺幣1仟700萬元
- 員工數:6人

|驅動國內IC設計業者先進發展補助計畫簡介|
在行政院「晶片驅動臺灣產業創新方案」政策架構下,經濟部產業發展署透過推動「驅動國內IC設計業者先進發展補助計畫」,以實質政策補助,引導業者往AI、高效能運算、車用或新興應用等高值化領域之「16奈米以下先進製程」或「具國際高度信任之優勢、特殊領域」布局,以避開中國大陸在成熟製程之低價競爭,並提升我國IC設計產業價值與國際競爭力。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓