DeepMind創辦人:突破人工智慧研究的天花板,關鍵在人類的「大腦」中
DeepMind創辦人:突破人工智慧研究的天花板,關鍵在人類的「大腦」中
2017.07.24 | Google

Demis Hassabis這個名字在人工智慧界絕對稱得上是如雷貫耳。

身為希臘裔賽普勒斯人和新加坡華裔混血的他,在年少時就展現出了極高的過人天賦,年僅十三歲便成為了世界國際象棋大師。不過他的職業生涯並非以人工智慧為起點展開的,畢業於劍橋大學的他最早憑著自己做出的兩部電子遊戲而為人熟知。

ehugvi2echawr5ho.jpg
Demis Hassabis。
圖/ 36 氪

他在AI界傳奇之路的開始還要回溯到2010年的9月,那時他在倫敦和另外兩位同事創立了一家人工智慧新創公司。 Demis把自己對於遊戲的熱愛也傾注到了這家剛剛誕生的公司裡,其從創立之初到現在的宗旨始終如一——透過人工神經網路讓電腦以人類的方式學習如何玩電子遊戲。

在拿到Elon Musk等人的投資後,Google一眼發現了這家目標看似莫名其妙的公司的巨大價值,豪擲4億英鎊(當時約合6.5億美元)將他們編入旗下。

這家新創公司,叫做DeepMind。

2f5jzrihhjjmi3az.jpg
圖/ 36 氪

在AlphaGo橫掃李世石和柯潔之後,其在圍棋界已經達到了獨孤求敗的境界。 DeepMind正在逐步將目光轉移到打造應用場景更為廣泛的人工智慧產品上,比如說讓電腦學會關係推理。

近來,Demis Hassabis出山發表了自己對於人工智慧未來看法的見解。

他堅信,若想讓人工智慧完全發揮自己最大的潛力,唯一的途徑是回到神經科學領域,重新深入鑽研人類大腦和智慧的奧妙,從中汲取靈感。

當下,絕大部分的AI系統的核心都只是一層層搭建起的數學模型,其從人類大腦工作模式中得到的啟發相當有限。

我們要明白的是,機器學習並非一把通往所有人工智慧奧秘的萬能鑰匙,其中的細分領域千差萬別。就拿我們最熟悉的語音識別和圖像識別舉例,雖然主觀感覺上它們的工作原理應該十分相似,但其實它們需要不同的數學結構模型;而且最後的成果算法只能用來解決極其具體的個例,應用範圍相當有限。

打造出能打包處理生活中各種大事小事的人工智慧,一直都是機器學習屆長久以來的夙願。但殘酷的真相是,將目前各種偏科生算法(比如有的只擅長語音識別,有的只應付得來圖像識別)拓展成多才多藝的「好學生」的難度,遠遠超乎我們的想像。這很大程度上是因為,人類思想中最為精髓的知覺、想像力和記憶等特質在人工智慧的世界還屬於襁褓期,甚至壓根不存在。

一篇於本週四在神經科學界最為權威的期刊《神經》(Neuron)上發表的論文中,Hassabis和另外三位共同作者指出,若想突破人工智慧應用的天花板,我們必須要對人類自己的智慧有著更為深入的了解。

他們詳細地闡述了為何要提倡採取這種方法。

首先,他們認為,如果我們能對自身大腦的工作機理有著更好的理解,這無疑能極大地拓展我們為人工智慧開發出的數學模型和算法的種類和深度。其次,在構建最先進的AI系統並對其進行海量測試時,我們自身也會反思什麼才是真正的「智慧」,有機會對這個玄奧的問題產生新的理解。

論文花了大量篇幅來回顧神經科學和人工智慧漫長的發展歷程,力圖對這兩者間的關係產生新的認知。他們指出,利用多層人工神經元來理解輸入數據的深度學習和在大量嘗試與失敗的積累中成長起來的強化學習,都與神經科學有著千絲萬縷的聯繫。

這篇論文也犀利地指出,人工智慧領域近期取得的成果依然沒有有效發揮神經科學本身的優勢,更加智慧的AI離不開進一步的人格特徵——比如說對現實世界的直覺認知以及更加有效的學習方式。

Hassabis和他的同事認為,若想解決此問題,還應加強人工智慧和神經科學二者間的聯繫,使它們齊頭並進。 「我想我們一定程度上,在密切關注日新月異的演算法同時,也應回頭看一看神經科學和大腦本身。我們甚至可以利用現有的人工智慧系統來研究大腦的工作機理。」

持有相似觀點的可不只有Demi Hassabis這位AI界真正的大佬一人。紐約大學(New York University)心理學教授及前Uber AI實驗室主任Gary Marcus提出我們可以將在研究孩童認知發展時探索到的知識,應用到機器學習系統的提升之中。

大道理都講完了,但若是想把這些先進的理念轉化到實際的人工智慧應用中去可絕非一件輕鬆的差事。在國外科技媒體《The Verge》對Demis Hassabis的專訪中,他說道:

「人工智慧和神經科學儘管同源,曾有著緊密的聯繫,但現在它們都已經成為了體量極其龐大的專業學術領域。舉例來說,神經科學方面的專業論文正在以每年5萬篇的速度高速成長。」

不要說在兩個領域均成為泰斗級人物,若是能在其中一個領域成為專家都已經是相當了不起的成就了。

Demis Hassabis和DeepMind希望能尋找在兩方面都有著深厚功力的人才,構建起人工智慧和神經科學間的橋樑,以簡潔的方式向世人揭示它們之間的緊密關係。

本文授權轉載自:36 氪

關鍵字: #DeepMind
往下滑看下一篇文章
科技創新守護海洋!犀牛盾以循環創新思維破解塑膠危機、賦能永續未來
科技創新守護海洋!犀牛盾以循環創新思維破解塑膠危機、賦能永續未來

全球每年約生產4億噸塑膠垃圾,只有不到10%有被回收,其中約有1100萬至1400萬噸最終流入海洋。在十分有限的回收量中,約 8 成來自相對單純、流程完整的寶特瓶回收;反觀,同樣是高頻消費品的手機配件,回收率卻不到 1%。這個現象,對長期從事材料研究的犀牛盾共同創辦人暨執行長王靖夫來說,是他反思事業選擇的開端,也是突破的轉捩點。

「手機殼產業其實是塑膠產業的縮影!」他在2025 亞馬遜港都創新日的專題演講上直言。手機殼本質上類似一種快時尚商品,每年有超過十億個手機殼被製造,但產業並未建立材料規範,多數產品混用多種複合塑膠、填料與添加物,既難拆解、也沒有回收機制。結果是,一個重量相當於超過二十個塑膠袋的手機殼,在生命周期終點只能被視為垃圾。

王靖夫指出,連結構複雜的資訊科技產品,回收率都能達 45%,但手機殼明明是最簡單、最應該回收的產品,為什麼無法有效回收?這個命題讓他意識到,與其只做手機殼,不如正面處理塑膠問題本身,從材料設計、製程到後端回收再生,開創循環之道。

犀牛盾共同創辦人暨執行長王靖夫於2025 亞馬遜港都創新日分享犀牛盾如何回應塑膠挑戰、開創循環模式。
犀牛盾共同創辦人暨執行長王靖夫於2025 亞馬遜港都創新日分享犀牛盾如何回應塑膠挑戰、開創循環模式。
圖/ Amazon Web Services 提供

以材料工程打造手機殼的循環力

若塑膠要進入循環體系,前提是「材料必須足夠單純」。王靖夫很快意識到,問題不在回收端,關鍵在最開始的設計端。多數手機殼由多款不同塑膠、橡膠件甚至金屬等複合材料組成,無法被經濟化拆解,也難以透過現有流程再製。為此,犀牛盾在2017年起重新整理產品線,希望借鑑寶特瓶成功循環的經驗,擬定出手機殼應有的設計框架。

新框架以「單 1 材料、0 廢棄、100% 循環設計」為核心,犀牛盾從材料工程出發,建立一套循環路徑,包括:回收再生、溯源管控、材料配方、結構設計、循環製程、減速包裝與逆物流鏈等,使產品從生產到回收的每一階段,皆與核心精神環環相扣。

王靖夫表示,努力也終於有了成果。今年,第一批以回收手機殼再製的新產品已正式投入生產,犀牛盾 CircularNext 回收再生手機殼以舊殼打碎、造粒後再製成型;且經內部測試顯示,材料還可反覆再生六次以上仍維持耐用強度,產品生命週期大大突破「一次性」。

另外,今年犀牛盾也推出的新一代的氣墊結構手機殼 AirX,同樣遵守單一材料規範,透過結構設計打造兼具韌性、耐用、便於回收的產品。由此可見,產品要做到高機能與循環利用,並不一定矛盾。

犀牛盾從材料學出發,實現全線手機殼產品皆採「單 1 材料」與模組化設計,大幅提升回收循環再生效率。
犀牛盾從材料學出發,實現全線手機殼產品皆採「單 1 材料」與模組化設計,大幅提升回收循環再生效率。
圖/ 犀牛盾

海上掃地機器人將出海試營運

在實現可循環材料的技術後,王靖夫很快意識到另一項挑戰其實更在上游——若塑膠源源不斷流入環境,再強的循環體系也只是疲於追趕。因此,三年前,犀牛盾再提出一個更艱鉅的任務:「能不能做到塑膠負排放?」也就是讓公司不僅不再製造新的塑膠,還能把已散落在環境中的塑膠撿回來、重新變成可用原料。

這個想法也促成犀牛盾啟動「淨海計畫」。身為材料學博士,王靖夫將塑膠問題拆為三類:已經流落環境、難以回收的「考古塑膠(Legacy Plastic)」;仍在使用、若無管理便會成為下一批廢棄物的「現在塑膠(Modern Plastic)」;以及未來希望能在自然環境中真正分解的「未來塑膠(Future Plastic)」。若要走向負排放,就必須對三個路徑同時提出技術與管理解方。

其中最棘手的是考古塑膠,尤其是海洋垃圾。傳統淨灘方式高度仰賴人力,成本極高,且難以形成可規模化的商業模式,因此無法提供可持續的海廢來源作為製造原料。為突破這項瓶頸,犀牛盾決定自己「下海」撿垃圾,發展PoC(概念驗證)項目,打造以 AI 作為核心的淨海系統。

王靖夫形容,就像是一台「海上的掃地機器人」。結合巡海無人機進行影像辨識、太陽能驅動的母船作為能源與運算平台,再由輕量子船前往定位點進行海廢收集:目的就是提升撿拾效率,同時也累積資料,為未來的規模化建立雛形。

從海洋到河川,探索更多可能

淨海計畫的下一步,不只是把「海上的掃地機器人」做出來,王靖夫說:「目標是在全球各地複製擴張規模化、讓撿起的回收塑膠真正的再生利用。」也就是說,海上平台終究要從單點示範,走向可標準化、在不同海域與國家部署的技術模組,持續穩定地把海廢帶回經濟體。

犀牛盾CircularBlue™海洋廢棄物過濾平台初號機將出海試營運,盼解決沿岸海洋廢棄物問題。
犀牛盾CircularBlue™海洋廢棄物過濾平台初號機將出海試營運,盼解決沿岸海洋廢棄物問題。
圖/ 犀牛盾

他進一步指出,「其實這套系統不限於海洋,也可以在河川上。畢竟很多海洋垃圾是從河流來的。」未來若能推進到河川與港灣,將塑膠在進海之前就攔截下來,不僅有助於減少海洋污染,回收後的材料也更乾淨、更適合再生,步步朝向終極願景——隨著時間推進,海中垃圾愈來愈少,被撿起、回收後再生的塑膠會越來越多。

「我們已經證明兩件事的可行性:一端是產品的循環設計,一端是 AI 賦能海廢清理的可能性。」王靖夫笑說,塑膠管理命題不只為自己和公司找到新的長期目標,也讓他順利度過中年危機。「選擇改變,留給下一代更好的未來。」他相信,即便是一家做手機殼的公司,也能創造超乎想像的正向改變。

AWS 2025 亞馬遜港都創新日,集結產業先行者分享創新經驗。
AWS 2025 亞馬遜港都創新日,集結產業先行者分享創新經驗。
圖/ Amazon Web Services 提供

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓