瞄準物聯網商機,Google新AI晶片Edge TPU跟以往有何不同?
瞄準物聯網商機,Google新AI晶片Edge TPU跟以往有何不同?
2018.07.27 | Google

Google在Google Cloud NEXT 2018活動中宣布推出新AI晶片Edge TPU,這個晶片功能是什麼?和過往的第一代到第三代TPU晶片(又稱為Cloud TPU)哪裡不同呢?

主攻工業物聯網,10月販售開發版套件

根據Google官方部落格資料,Edge TPU是一種低功耗低成本的ASIC晶片,而且體積非常小,小於1美分銅板。ASIC專用晶片和GPU通用晶片比較之下,晶片功耗較低,延遲性也較低,運算效率較高,如Edge TPU在高分辨率影音上可以以每秒30幀的速度,在每幀上同時執行多個AI模型。

另外,Google也將推出Edge TPU開發版套件(module development kit)。其中含有恩智浦CPU、Edge TPU、Wi-Fi功能和加密晶片的開發版在今年10月就會對外販售。

Google也提到Edge TPU將主攻預測性維護、異常檢測、機器視覺、機器人、語音識別等工業物聯網應用場景,除了在工業製造領域,在醫療、零售、智能空間與交通等領域也是用。而LG已經計劃在產品線上使用Edge TPU。

而支援Edge TPU的框架和軟體服務則全都綁定在Google自家的架構之中,打造「封閉的生態系」意圖明顯。希望開發者或企業也會採用Edge TPU後,也會被綁定在Google Cloud服務中。因此在使用上必須搭配Google的 Cloud IoT Edge 軟體,並且針對 TensorFLow 機器學習模型優化。

EdgeTPU新晶片和Google過往推出的TPU晶片不同。Google過往推出的第一代到第三代TPU晶片用途在資料中心,也就是雲端運算的機器學習訓練和推論使用,因此被稱為Cloud TPU,而剛推出的新晶片則用在終端裝置,也就是邊緣運算的推論,也因此Gogole以Edge TPU稱之。

邊緣運算的推論又是什麼意思呢?

什麼是邊緣運算與推論?根據台灣產業分析公司拓墣的描述:邊緣運算可說是物聯網時代下的產物,「邊緣運算在傳統雲端與裝置端的連接中間,多了一層運算層──Edge 端,Edge 其實指的是靠近數據源的運算單位,包括閘道器、路由器,以及硬體底層相關的各種機器、裝置、設備與系統。」

「有了 Edge 端直接針對多裝置、龐大訊息先做擷取、過濾與處理,對裝置端做出回饋與反應,不用讓所有資料都上到雲端,以期在資料量逐漸龐大、重視資訊即時處理傳輸的現代,更能有效率處理資訊,減少事事上雲端所帶來的時間遞延與資料傳輸/儲存成本。」

而推論呢?NVIDIA的官網文章中指出,「深度神經網路進行『訓練』階段,就猶如校園裡的授課活動。就跟大多數人接受教育的理由一樣,神經網路接受教育的理由也是學習怎麼執行工作。更明確一點來說,經過訓練的神經網路會在數位環境裡發揮所學習到的內容,通過應用程式這種簡單的型態來辨識影像、人類語言、血液疾病,或建議人們下一雙可能會買的鞋子等等。這個速度更快、效率更高的神經網路會按照訓練過的內容,猜想新資料的走向。在人工智慧圈的詞彙裡,這稱為「inference」(推論)。」也因此神經網路模型未經過訓練便不會進行推論。

理解邊緣運算與推論之後,我們回過頭來看Edge TPU。以應用場景來看,Google Cloud首席合作夥伴暨代理商愛卡拉互動媒體共同創辦人暨營運長鄭鎧尹指出:

Edge TPU可以讓整個硬體產業,將雲端的強大運算能力「下載」到本地端的機器上面, 使本地端的機器具備一定的智能。

如一般居家設備或電子設備,能做一定程度的『預測功能』。舉例來說,家中的智慧「門」遇到來客時,並不需要透過網路把人臉丟回「雲端」辨識,而是「門」自己直接就可做完這個辨識。

終端設備無須將資料回傳雲端,就能直接做出預測可以帶來資料安全性更高、延遲速度較小與不受頻寬限制等許多好處,可以提供更好的使用者體驗。以上述的智慧門人臉辨識為例,就可以更快速地提供來客身份確認。

Edge TPU會取代 Cloud TPU?

那EdgeTPU優點這麼多會取代Cloud TPU嗎?也不會。在AI應用場景中,邊緣運算短期內不會取代雲端運算,因為許多高階應用機器學習模型,由於消耗的運算量大,還是需要透過「雲端」訓練機器學習模型,邊緣運算由於硬體成本與環境限制,還是有其運算侷限,也因此若延伸到兩種晶片的關係上,兩者是相輔相成,功能不重疊,是互補關係。

Google在官方部落格中強調:「Edge TPU是設計來讓Google的 Cloud TPU 產品更完整。」如此一來,可以更快地在雲端中訓練機器學習,然後在Edge飛速進行機器學習推演。這讓你的感測器不再只是數據收集器,而是可以做出更在地、即時、智慧的決策。

缺點

不過Edge TPU本質上是ASIC晶片,由於是專用訂製晶片,在AI演算法不斷推陳出新,還沒有到成熟穩定時期,Edge TPU很難克服不同演算法之間的差異性。

關鍵字: #Google
往下滑看下一篇文章
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網

為守護保戶資產,南山人壽集結客戶服務、數位、資訊三個部門的能量,自行研發「黃金眼 AI 防詐模型」,自 2024 年底完成開發後,截至今年 11 月已成功阻擋多起詐騙案件、攔阻金額累計逾新臺幣 900 萬元,並獲得 2025 數位金融獎等殊榮。

「黃金眼 AI 防詐」模型為什麼可以有效防詐、更好守護保戶資產?

南山人壽客戶服務資深副總經理李淑娟面帶微笑地解釋:「『黃金眼 AI 防詐』是透過龐大的保戶資料結合前線客服的實務經驗建構而成的模型,不僅克服了壽險業交易頻率低且詐欺樣本極度不平衡的挑戰,還能夠偵測在臨櫃辦理保單借款或解約的高風險個案,讓客服人員可以主動提醒與關懷,有效降低詐騙風險,守護客戶資產安全與信任。」

南山人壽
南山人壽客戶服務資深副總經理李淑娟指出,詐騙手法快速進化,南山人壽研發黃金眼AI防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。
圖/ 數位時代

從詐保到詐財,壽險業面臨的風險加劇

過往,壽險業者面對的主要風險是保險詐欺,例如,透過偽造事故情節、虛構醫療紀錄等方式詐領保險理賠金,然而,隨著科技迭代與詐欺集團的組織化、專業化,這類手法已快速進化,從「偽造病歷、輕病久住、醫療共犯」等傳統模式,轉向結合數位科技與精準話術的跨領域詐財操作。

這一波詐欺風險不僅滲透力強、具備高迷惑性,也直接影響保戶資產安全。例如,詐欺集團利用假冒理賠諮詢等方式竊取保戶個資,再一步步誘導客戶辦理解約或申請保單借款,最後要求將資金匯到不明帳戶等,壽險業者面臨的風險範圍也從「詐領保險理賠」延伸到「詐騙保戶資產」。

李淑娟資深副總經理進一步指出,南山人壽每年要處理逾 35 萬件解約與借款案件,很難單憑人力在海量案件中精準辨識高風險個案。「為有效防堵詐欺事件,南山人壽除開發 AI 模型辨識詐保事件,更進一步研發黃金眼 AI 防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。」

南山人壽以黃金眼 AI 防詐模型守護保戶資產

在打造黃金眼 AI 防詐模型時,南山人壽面臨兩個挑戰:首先是壽險的交易頻率低,導致資料稀缺;其次,是詐欺樣本比例高度失衡,導致 AI 很容易誤判。為化解這些挑戰,南山人壽整合保戶行為、保戶與保單側寫資訊與情境因素等多模態資訊進行模型訓練,爾後,透過集成學習(Ensemble Learning)整合多個不同觀點的「專家模型」共同判讀,提升模型判斷準確性。

南山人壽數位專案經理蔡其杭表示:「以多模態數據源跟集成學習的策略打造黃金眼 AI 防詐模型後,我們除了將模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級,協助客服人員快速識別高風險個案,主動介入並阻斷詐騙,更透過『自適應演進』與『外部資源擴充』兩個機制,持續優化模型辨識精準度。」

南山人壽
南山人壽打造黃金眼AI防詐模型,將模型串連至臨櫃客服系統,以直觀的紅、黃、綠三色燈號,即時呈現保戶的風險等級、協助客服人員快速識別高風險個案。
圖/ 數位時代

「自適應演進」指的是,客服人員會依據模型亮起的燈號,結合系統提供的關懷提問表,向臨櫃辦理解約或借款的保戶進行關懷詢問,如資金用途、是否接獲可疑來電等,藉此釐清是否存在異常情況,並將相關結果回貼標籤,作為後續調校模型的關鍵訓練素材,讓黃金眼 AI 防詐模型越用越精準。

「外部資源擴充」則是透過更多元的外部數據強化模型的防詐能力。例如南山人壽與內政部警政署刑事警察局簽署反詐騙合作備忘錄(MOU),在合規架構下共享情資,協助核對保戶是否曾有詐欺通報紀錄。蔡其杭補充,南山人壽目前正與電信業者合作,將其超過 1,400 項特徵因子導入模型,有效提升模型燈號判斷的靈敏度與可靠度,使黃金眼 AI 防詐成為更全面的金融詐欺偵測引擎。

蔡其杭表示,詐騙的手法日新月異,AI 阻詐模型除了能準確識別可疑的高風險案例外,更重要的是具備與時俱進、持續調優模型能力和效果的機制;如同維持客戶服務的品質一樣,刻不容緩。

南山人壽
南山人壽數位專案經理蔡其杭表示,黃金眼AI防詐模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級。
圖/ 數位時代

李淑娟表示:「隨著模型的持續優化,黃金眼 AI 防詐模型的應用範疇將從目前的『臨櫃防堵』延伸到『全通路、跨產業、事前預警』的防禦機制,以事前預警的方式防堵詐欺事件。」舉例來說,當保戶撥打電話詢問保單借款或解約時,系統就會開始運作、提前識別風險,針對透過手機 APP 或網路平台辦理業務的數位客群,系統也會即時偵測,當出現高風險行為時即會立即展開關懷提問。

不僅從科技著手,南山人壽以 SAFE 逐步提升防詐安全網

值得特別注意的是,南山人壽並未將防詐視為單一的科技工程,而是從 SAFE–Skilled(防詐訓練)、Awareness(全民防詐)、Fintech(科技運用)、Engagement(聯防合作)–四個構面打造更完整的防護機制。

在專業技能方面,南山人壽不僅協助相關人員熟悉黃金眼 AI 防詐模型的操作模式,也持續透過內部教育訓練,以及跟刑事警察局等單位合作舉辦的工作坊等方式,全面提升員工識詐、阻詐的能力,達到 AI 人機互動的阻詐聯防保護網。

在防詐意識宣導方面,南山人壽除於全台 18 個分公司櫃檯播放刑事警察局提供的反詐騙影片,並在櫃檯明顯位置放置防詐文宣,協助來訪保戶掌握最新詐騙趨勢;更主動走入偏鄉、校園與新住民社群,並針對聽語障人士製作友善素材,以多元形式推廣防詐知識,降低詐騙事件發生的可能性。

在公私協力方面,李淑娟表示,南山人壽積極培育、鼓勵每一位壽險業務員成為「防詐大使」,在拜訪客戶時主動觀察各種異常徵兆,例如可疑的投資文宣或陌生人的頻繁出入,並將這些現場蒐集到的「軟性數據」提供回公司,作為模型判斷的補強資訊,以提升事前預警效果。

為了更好的保護高齡與失智等高風險族群,南山人壽也積極推動「保單安心聯絡人」機制,鼓勵保戶指定第二聯絡人,在其申請保單借款或終止契約時,可以主動通知聯絡人介入確認,降低詐騙風險;此外,亦針對受詐保戶提供「喘息關懷服務」,以低利紓困貸款協助保戶在遭遇詐騙後仍能穩定度過財務壓力,將防詐保護從事中攔阻延伸到事前預警與事後援助兩個層面,樹立產業新標竿。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓