基隆-石垣島9月開航!「睡一晚就到」、票價最便宜4000元起,墾丁這次真的危險了?
基隆-石垣島9月開航!「睡一晚就到」、票價最便宜4000元起,墾丁這次真的危險了?

去「日本馬爾地夫」不用再轉機!日本商船業者日前宣布,預計今年9月正式開通「基隆至石垣島」渡輪航線,來回票價約新台幣4000元起跳,票價優勢引發衝擊國旅市場的熱議,甚至有網友認為,直呼「墾丁危險了」。

基隆-石垣島航班票價4000元起,「睡一晚起來」就能登島

前往海島度假時,距離台灣較近的石垣島是許多人首選的熱門旅遊地,然而過去通常沒有直飛航班到達,需要先到沖繩那霸機場轉機,搭乘日本國內線飛往石垣島。如今開通「基隆-石垣島」新渡輪航線,也讓旅客多了一項交通新選擇。

「基隆-石垣島」是由日本沖繩縣石垣市規劃開闢的定期客貨兩用航線,並與台灣華岡船務集團合作經營,特別成立新公司「商船やいま」(Yaima Line)負責營運,也是台日海上運輸17年來首次恢復定期航線。

根據日本媒體報導, 「基隆-石垣島」航線預計規畫每年140個往返航班,每週大約2至3個航班,單程航行時間約7小時 ,提供渡輪服務的豪華渡輪「YAIMA丸號」載客量約545名乘客,配備餐廳、大型公共浴場等設施,未來將安排夜間從基隆港出發,「睡一晚起來」就能直達石垣島。

旅客最在意的票價方面, 依船艙等級不同,單趟最低基本票價從1萬日圓起跳(約新台幣2090元),來回約4000元,比從台灣到那霸、再轉機到石垣島的來回機票約新台幣1萬元,以及費用至少2、3萬元的郵輪來得便宜許多。

目前,商船やいま已向台灣交通部航港局提出航權申請,目前正處於審核階段。詳細票價與班次時刻表仍待公布。

墾丁危險了?時間、成本「CP值」恐輸新航線

新航線開通消息一出,最便宜僅4000元的票價競爭優勢,再度引發國旅市場萎縮熱議。

由於石垣島與墾丁海島觀光性質相似,在成本上形成強烈落差,例如,以台北至墾丁的交通為例,搭乘高鐵及墾丁快線,來回費用同樣約4000元左右,有網友認為,渡輪主打出國體驗,相較墾丁旅遊的CP值更高。

且在整體交通時間上,搭7小時的夜間渡輪能夠利用睡眠時間移動,從北部出發前往墾丁則需要花費5小時以上,綜合來看,對於預算有限的遊客,石垣島渡輪更具吸引力。

另一方面,根據旅遊作家柒柒夫妻543臉書指出,雖然此次價格親民,但渡輪實際搭乘時間還須包含報到手續、托運行李等,來回加總可能將近20小時。加上石垣島面積比台北市小,恐影響當地的租車數量不足、景點過於集中壅塞等問題。

而針對墾丁積累已久的觀光困境,也有不少人認為,新航線可視為國旅政策的反思契機,如發展當地特有文化、提升觀光品質、深化生態永續旅遊等。

華航、虎航限定直飛航班!時間一次看

除了渡輪之外,華航也重啟桃園-石垣島直飛航班,即日起至10月25日,每週三、六提供2班機直飛。

台灣虎航也宣布將於7月17日至10月23日,限時開通石垣島航線,每週四、日2班機直飛,預計6月開賣。

延伸閱讀:有線電視要掰了?NCC揭僅剩433萬訂戶:關鍵1原因,讓民眾「續訂不下去」

往下滑看下一篇文章
AI 智慧代理人時代來臨!三大導入階段, AI 落地企業不卡關
AI 智慧代理人時代來臨!三大導入階段, AI 落地企業不卡關

生成式 AI 帶動企業數位轉型浪潮持續升溫,各界不再滿足單一任務型的 AI 應用,而是期盼 AI 能真正成為具備主動決策與多工能力的「智慧代理人」(Agentic AI),在最少人為干預的情況下,自主推進工作流程、完成複雜任務。

但企業導入AI並非一蹴可幾,而是需要對AI有正確認識,並制訂循序漸進的導入流程,才能真正發揮AI功效。在2025台灣人工智慧年會中,cacaFly 聖洋科技技術副總吳振和提出三大導入關鍵階段,深入剖析企業如何從概念驗證(PoC)階段,逐步推進到實際上線(Production),並分享實務經驗與觀察。

延伸閱讀:生成式AI可以怎麼用?cacaFly現身說法,助企業應用GCP服務智慧轉型

解鎖 Agentic AI,企業邁向多任務智慧代理

「很多公司會問,One AI 要做什麼事?但實際上,若要讓 AI 回答公司內部政策或新法條的相關問題,僅靠基礎模型並不足夠。」吳振和指出,要讓 AI 真正成為能「做事」的智慧代理人,前提是它必須理解企業內部的脈絡與知識,並即時掌握外部變動的資訊。

企業必須先釐清內部規範是否與最新法規相符,這意味著系統必須具備持續爬取與解析最新資料的能力。為此,企業必須先截取與整理內容,再建構成專屬的知識庫(Knowledge Base),確保資料品質達到可用標準後,再透過檢索增強生成(Retrieval-Augmented Generation, RAG)技術,使 AI 能夠即時動態查詢並生成符合企業語境的回答。

延伸閱讀:從資料清洗到 RAG,大型語言模型的必需品,做出專屬企業的 AI 知識庫!

吳振和強調,這是一個動態循環的過程:從資料蒐集、品質控管、知識庫建構到生成應用,每一環節都息息相關,任何一處鬆動都會影響最終產出的準確性與可信度。

cacaFly 聖洋科技技術副總吳振和
圖/ cacaFly

破除「一次到位」迷思,從驗證到落地的三大關鍵階段

許多企業對 AI 寄予厚望,因此常將 PoC 視為年度計畫的重點,希望能「一次到位」做出具體成果。但吳振和提醒,若缺乏清楚的系統工程思維,PoC 容易淪為「概念展示」,難以真正走入組織的日常營運。

他將導入 Agentic 系統工程的歷程,分為三個關鍵階段:

1.第一階段:可行性評估(Feasibility Study)
企業必須在投入資源前,先明確界定「最需要被 AI 解決的關鍵問題」是什麼,並進一步設計可量化的驗證指標。這不僅包括評估技術實作的可行性,更要從商業目標出發,釐清導入 AI 的具體使用情境、預期成效與風險邊界,如此才能確保後續模型選型與資料蒐集方向正確對齊業務需求。

2.第二階段:系統設計與驗證(Design & PoC)
在確定導入方向後,必須規劃清楚資料蒐集與整理流程,確保知識庫的內容具備正確性、完整性與時效性。吳振和特別強調,這個階段不能只追求展示效果,而應以「產品化思維」來構築 PoC,使其具備可擴充性、可維護性及安全性,才能為後續上線打下基礎。

3.第三階段:產品化與營運(Production & Operation)
當 PoC 驗證完成後,進入正式上線階段,挑戰也隨之而來。除了需要整合企業內部系統與流程,還必須建立持續監控與維運機制,確保模型表現隨時間演進不會劣化,並能快速回應法規變動或資料更新的需求。吳振和指出,這往往是最容易被低估、但也是最考驗企業組織能力的關鍵環節。

cacaFly 聖洋科技技術副總吳振和
圖/ cacaFly

建立模型優化根基,打造高品質的黃金資料集

吳振和特別強調,要讓 Agentic 系統工程真正發揮效益,企業必須先建立一套高品質的「黃金資料集」(Golden Dataset),作為模型評估與優化根基。他指出,黃金資料集的價值在於能為模型選擇與前測提供客觀依據,讓團隊能針對不同任務挑選最適合的模型,避免導入初期就誤踩方向。

同時,黃金資料集也能協助團隊辨識模型的常見錯誤與脆弱點,進而快速回應「模型飄移」(Model Drift)的風險。吳振和說明,所謂模型飄移,指的是即使模型本身未經改版,效能也可能隨著環境與資料變動而突然下降,導致原本表現良好的模型出現偏差。透過持續比對模型預測與黃金資料集結果,團隊才能即時察覺效能衰退,並進行迭代更新,確保系統長期穩定運作。

從小規模應用起步,漸進擴展至核心業務

吳振和分享,在實際輔導企業導入 AI 的經驗中,最常見的挑戰來自於「期待落差」。許多企業誤認為概念驗證(PoC)階段即可呈現完整的產品原型,然而實際情況顯示,若企業未能建立完善的資料架構與流程基礎設施,即使短期內展現亮眼成效,也難以確保長期營運的穩定性與可持續性。

也因此他建議企業在規劃 AI 導入時,應採取漸進式策略,從小規模應用場景著手,逐步擴展至核心業務領域。企業應將 PoC 定位為整體產品開發生命週期的重要環節,而非獨立的一次性專案。

AI 的導入不僅是一場技術升級,更是企業組織文化與決策流程的轉型工程。唯有從資料治理、流程優化到人才培訓同步布局,才能確保 AI 能在企業內部真正「落地生根」,創造長期商業價值,成為真正的智慧代理人。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓