學習是轉換職場的必備能力
學習是轉換職場的必備能力
2006.10.15 | 科技

Profile 
現職:聯發科技人力資源處招募副理
經歷:惠普(HP)國際採購處採購經理
學歷:國立台灣大學財務金融系畢業 

給科技人的一句話:挫敗是一輩子最大的禮物 

台大財務金融系畢業的曾雅萍,原在惠普(HP)電腦國際採購處工作,八年後,以採購經理轉彎到聯發科擔任人力資源招募副理。跑道徹底轉換,但是聯發科董事長蔡明介在面試她時,卻不因她完全沒經驗而拒用她,是什麼道理?

蔡明介說過:「不要規劃,只要adaptive(適應)!」身處充滿變化的高科技環境,蔡明介認為只要對新科技充滿好奇,擁有適應力,永保彈性,就是人才。同時聯發科的用人哲學強調專職技術(domain knowledge)、抽象能力(soft skill)和人格特質(personality)三大面向,只要具有團隊合作、擅於溝通等抽象能力和誠信正直、不怕挑戰的人格特質,專職技術其實隨時都可補齊。

講話清楚、簡報能力很強的曾雅萍,演講一開始就帶給現場聽眾一個當頭棒喝:現在企業只願意雇用一半的員工,給付員工兩倍的薪水,但要求員工三倍的產能。「一二三」原則,充分顯示出目前職場的辛苦,更點出「誰是那些被雇用的二分之一」憂慮。

從公司的核心工作團隊、聘僱人員到彈性運用勞工,現代人的職涯轉換早已成為必然,有什麼是必備的能力,才能在不斷變動的時代,持續成為永遠被雇用的二分之一?在聯發科已經任職兩年人力資源的曾雅萍,當然是有答案的。

面對一批批到聯發科求職或有心轉換職場的人,曾雅萍表示,保持彈性和適應力、與全球人力接軌的團隊合作精神、向上/向下管理溝通的能力、解決問題、持續創新等,都是「不敗科技人」最重要的特質,擁有這些特質,就是那二分之一的人力。

她同時特別提出,「持續學習的能力絕對是轉換職場的必備能力。」而蘋果(Apple)電腦創始人賈伯斯(Steve Jobs)在史丹佛大學畢業典禮演講的「求知若飢、虛心若愚」(Stay hunger, Stay foolish.),更是曾雅萍極力推薦給科技人的名言。

雖然是一場「不敗科技人」的演講,曾雅萍卻說二十五到四十歲這關鍵的十五年職涯,「科技人其實應該求敗,挫敗是一輩子最大的禮物,」唯有從敗中才能找到未來的勝利之路,再一次她以賈伯斯為例,以他被趕出蘋果電腦的大挫敗來鼓勵職場工作者。

因為擔任人力資源已有一段時日,曾雅萍認為二十五歲到三十歲的工作者,靠的是勞力和腦力,這個階段一定要廣泛學習;三十歲到三十五歲是講求專業的時期,這個時期講求工作上的成就,要懂得時間管理;三十五歲到四十歲就要培養自己的眼光,要具有充沛的資源整合能力,當聚集足夠人脈、錢脈時,就有了自我創業的能量。

曾雅萍同時以「IC設計一代拳王」的曲線圖來提醒工作者,在第一個曲線還沒走完時,就應該要想到下一個(產品、職涯)。第二個曲線不見得一定要和第一曲線同一領域,「問題是,我們是否能在最成功的時刻看到危機,進而勇敢追求另一個潛在的自我?」

她以自己決定轉業為例,中間轉折的一年時光裡,十分沒有安全感,但是「相信自己」的堅持讓她繼續走下去。她最後引用馬克吐溫(Mark Twain)的名言,「若想要真正成長,那就要挑戰能力的極限,也就是暫時地失去安全感所以當你不能確定你自己在做什麼時,起碼要知道,你正在成長。」獻給所有考慮轉彎的職涯工作者。(撰文∥龐文真) 

往下滑看下一篇文章
AI 智慧代理人時代來臨!三大導入階段, AI 落地企業不卡關
AI 智慧代理人時代來臨!三大導入階段, AI 落地企業不卡關

生成式 AI 帶動企業數位轉型浪潮持續升溫,各界不再滿足單一任務型的 AI 應用,而是期盼 AI 能真正成為具備主動決策與多工能力的「智慧代理人」(Agentic AI),在最少人為干預的情況下,自主推進工作流程、完成複雜任務。

但企業導入AI並非一蹴可幾,而是需要對AI有正確認識,並制訂循序漸進的導入流程,才能真正發揮AI功效。在2025台灣人工智慧年會中,cacaFly 聖洋科技技術副總吳振和提出三大導入關鍵階段,深入剖析企業如何從概念驗證(PoC)階段,逐步推進到實際上線(Production),並分享實務經驗與觀察。

延伸閱讀:生成式AI可以怎麼用?cacaFly現身說法,助企業應用GCP服務智慧轉型

解鎖 Agentic AI,企業邁向多任務智慧代理

「很多公司會問,One AI 要做什麼事?但實際上,若要讓 AI 回答公司內部政策或新法條的相關問題,僅靠基礎模型並不足夠。」吳振和指出,要讓 AI 真正成為能「做事」的智慧代理人,前提是它必須理解企業內部的脈絡與知識,並即時掌握外部變動的資訊。

企業必須先釐清內部規範是否與最新法規相符,這意味著系統必須具備持續爬取與解析最新資料的能力。為此,企業必須先截取與整理內容,再建構成專屬的知識庫(Knowledge Base),確保資料品質達到可用標準後,再透過檢索增強生成(Retrieval-Augmented Generation, RAG)技術,使 AI 能夠即時動態查詢並生成符合企業語境的回答。

延伸閱讀:從資料清洗到 RAG,大型語言模型的必需品,做出專屬企業的 AI 知識庫!

吳振和強調,這是一個動態循環的過程:從資料蒐集、品質控管、知識庫建構到生成應用,每一環節都息息相關,任何一處鬆動都會影響最終產出的準確性與可信度。

cacaFly 聖洋科技技術副總吳振和
圖/ cacaFly

破除「一次到位」迷思,從驗證到落地的三大關鍵階段

許多企業對 AI 寄予厚望,因此常將 PoC 視為年度計畫的重點,希望能「一次到位」做出具體成果。但吳振和提醒,若缺乏清楚的系統工程思維,PoC 容易淪為「概念展示」,難以真正走入組織的日常營運。

他將導入 Agentic 系統工程的歷程,分為三個關鍵階段:

1.第一階段:可行性評估(Feasibility Study)
企業必須在投入資源前,先明確界定「最需要被 AI 解決的關鍵問題」是什麼,並進一步設計可量化的驗證指標。這不僅包括評估技術實作的可行性,更要從商業目標出發,釐清導入 AI 的具體使用情境、預期成效與風險邊界,如此才能確保後續模型選型與資料蒐集方向正確對齊業務需求。

2.第二階段:系統設計與驗證(Design & PoC)
在確定導入方向後,必須規劃清楚資料蒐集與整理流程,確保知識庫的內容具備正確性、完整性與時效性。吳振和特別強調,這個階段不能只追求展示效果,而應以「產品化思維」來構築 PoC,使其具備可擴充性、可維護性及安全性,才能為後續上線打下基礎。

3.第三階段:產品化與營運(Production & Operation)
當 PoC 驗證完成後,進入正式上線階段,挑戰也隨之而來。除了需要整合企業內部系統與流程,還必須建立持續監控與維運機制,確保模型表現隨時間演進不會劣化,並能快速回應法規變動或資料更新的需求。吳振和指出,這往往是最容易被低估、但也是最考驗企業組織能力的關鍵環節。

cacaFly 聖洋科技技術副總吳振和
圖/ cacaFly

建立模型優化根基,打造高品質的黃金資料集

吳振和特別強調,要讓 Agentic 系統工程真正發揮效益,企業必須先建立一套高品質的「黃金資料集」(Golden Dataset),作為模型評估與優化根基。他指出,黃金資料集的價值在於能為模型選擇與前測提供客觀依據,讓團隊能針對不同任務挑選最適合的模型,避免導入初期就誤踩方向。

同時,黃金資料集也能協助團隊辨識模型的常見錯誤與脆弱點,進而快速回應「模型飄移」(Model Drift)的風險。吳振和說明,所謂模型飄移,指的是即使模型本身未經改版,效能也可能隨著環境與資料變動而突然下降,導致原本表現良好的模型出現偏差。透過持續比對模型預測與黃金資料集結果,團隊才能即時察覺效能衰退,並進行迭代更新,確保系統長期穩定運作。

從小規模應用起步,漸進擴展至核心業務

吳振和分享,在實際輔導企業導入 AI 的經驗中,最常見的挑戰來自於「期待落差」。許多企業誤認為概念驗證(PoC)階段即可呈現完整的產品原型,然而實際情況顯示,若企業未能建立完善的資料架構與流程基礎設施,即使短期內展現亮眼成效,也難以確保長期營運的穩定性與可持續性。

也因此他建議企業在規劃 AI 導入時,應採取漸進式策略,從小規模應用場景著手,逐步擴展至核心業務領域。企業應將 PoC 定位為整體產品開發生命週期的重要環節,而非獨立的一次性專案。

AI 的導入不僅是一場技術升級,更是企業組織文化與決策流程的轉型工程。唯有從資料治理、流程優化到人才培訓同步布局,才能確保 AI 能在企業內部真正「落地生根」,創造長期商業價值,成為真正的智慧代理人。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓