[專訪] 搶當大數據科學家,5大特質你有嗎?
[專訪] 搶當大數據科學家,5大特質你有嗎?
2015.05.04 | 科技

大數據科學家有多夯?讓我們從有史以來市值最高的科技公司蘋果看起。為搶大數據科學家,蘋果開出美金16萬到20萬(約合台幣400萬到600萬)的年薪,以及任何你想得到的好康福利:美味員工餐、健身中心、教育津貼甚至凍卵補助,但蘋果不是唯一一個需要數據科學家的公司,打開領英(LinkedIn),上頭至少有5萬3千個數據科學家的職缺,而這還只是美國的統計數字。

美國專業招聘公司羅致恆富(Robert Halt)公布的《2015薪資指南》把大數據工程師列為今年薪資漲幅最大的六大行業之一,預計薪資年成長率9.3%,平均年薪119,250美元至168,250美元,在國內根據經驗平均也有100萬到500萬的薪資行情。

鼎鼎大名的數據科學家你也許聽過不少,諸如美國白宮首席數據科學家帕帝亞(DJ Patil)、被選為全美Top 4技術長的寶立明又或者是阿里巴巴集團大數據的第一把交椅車品覺,但這些如雷貫耳的大數據科學家動輒掌管一個個國家或跨國企業的海量數據,彷彿離一般人很遙遠。其實,現在各行各業都亟需大數據科學家,你也可以加入大數據淘金潮,但到底什麼樣的人才適合做大數據的工作呢?想要搶搭大數據人才熱潮,晉身高薪一族,又需要注意哪些事情?

大數據行動廣告平台威朋是一家藉由分析行動裝置的數據,為客戶找到精準行銷目標的數據管理平台(DMP)與即時廣告競價(RTB)投放公司,業務橫跨台、日、中、港等地,數據分析為其業務核心,數據分析部門佔其人員大宗,威朋數據科學研發經理彭智楹與張嘉祜分別擁有多年數據分析經驗,現身說法分享數據科學家到底在做什麼以及如何成為數據科學家。

威朋大數據科學家
(圖說:威朋數據科學研發經理彭智楹擁有將近8年的數據分析經驗,張嘉祜則是4年。照片來源:蔡仁譯攝。)

威朋大數據科學家現身說法
張嘉祜

學歷:
臺灣大學資訊工程學系網路與多媒體研究所博士
中央大學通訊工程學系碩士
中興大學電機工程學系學士

彭智楹
學歷:
臺灣大學資訊工程研究所 博士
臺灣大學物理系學士
臺灣大學心理系學士

就跟絕大數從事電腦工程的人一樣,張嘉祜和彭智楹皆畢業於資工系,在學期間就已開始從事資料分析工作,每日需與大量數據為伍,兩人皆認為在學校所學的知識和技能有助於他們進入職場從事相關工作。張嘉祜念博士時分析大量的影音多媒體資料,而彭智楹曾與生物學家合作分析生物影像,分析影像資料看似與分析廣告數據大不相同,但其實背後原則相差不遠,重點都是要從茫茫資料海中找到有價值的資訊,只是資料種類不同而已。

兩人的工作雖然都是大數據分析,但張嘉祜更專注於幫助線上廣告投放達到最大效益化,偏向商業智慧分析,並且發展幫助其他同事可以快速找到問題答案的工具,快速從大數據中檢索需要的統計資料,幫助客戶改善行銷策略。另一方面,從市場反應決定要做出什麼相對應措施,時常與點擊率、轉化率和流失率等數據為伍。而彭智楹則負責開發資料探勘系統、寫演算法和機器學習,例如預測點擊率,判斷使用者打開App時點擊廣告的機率有多大,較偏向於垂直面的研究。

特質一:定義和釐清問題

談及好的數據科學家具備什麼條件,彭智楹認為可以分成兩種等級:一種是是別人幫你把問題定義好,然後你來解開,但更厲害的是你知道怎麼找問題,什麼問題才是重要的,自己發現問題。「你要定義最有前瞻性最重要的問題,結果不只正確還要顯著性,對各領域發展有貢獻,要有商業價值和技術進步的空間,兩者能兼備是最好的。」彭智楹說。張嘉祜也認為在分析數據時,定義問題的能力很重要,因為問題分成很多層面,數據科學家必須要看當下要解決什麼問題,再用那個指標去回答。因此數據科學家首要具備的條件就是:定義和釐清問題。

特質二:想像力

不要以為數據科學家整天在電腦前面工作,只要一板一眼地分析數據就好,其實想像力也很重要。張嘉祜根據自己的工作經驗指出,有一定的創意才能幫助自己找到不一樣的觀點,學校會訓練你使用習慣的工具,但你應該要嘗試各種可能,如果沒有專業知識判斷,最後得到的結果就會跟大家差不多

例如在威朋工作常會需要幫助客戶找到具有某種特徵的族群,這個時候若只靠經驗和專業是不夠的,還需要發揮一些想像力。「我們在描述一個人的行為傾向時是很多維度的東西去做整合,除了你對生活經驗的豐富度之外,你還要有創意去描述這種人具有什麼樣的行為特徵,我們再透過機器學習的輔助,幫助你快速收斂這些特徵背後隱含的意義是什麼,不然一般人就是我想到什麼樣的資訊我就勾一勾,這樣不夠。」張嘉祜說。

特質三:邏輯思考能力

數據科學家的工作時常需要建立假設然後去驗證它,並且建立模型,這個過程仰賴優秀的邏輯思考能力,否則追尋答案到一半可能不小心就會走到岔路。大學時期雙修物理和心理學的彭智楹認為,心理系的訓練幫助他可以更容易了解他人的動機和想法,也因此在分析數據時常有意想不到的收穫。

以數據科學家最討厭的機器人為例,這類的假數據抓不勝抓,又會影響到統計結果,令人不堪其擾,但彭智楹認為與其去思考機器人在哪裡,要怎麼抓,不如反向思考什麼樣的網頁需要機器人,機器人的數據從哪裡來,就像是偵探福爾摩斯一樣,「偵探怎麼找出犯人,他不是從犯案手法去看的,而是從動機。」

威朋大數據科學家
(圖說:彭智楹平時就喜歡分析生活中的常見現象,例如觀察公司電梯哪一台跑最快,為什麼最快。照片來源:蔡仁譯攝。)

特質四:基礎數理與資訊工程能力

雖然彭智楹和張嘉祜都同意數據科學家不一定非得要是理工學院或電資學院出身的,但也都異口同聲地指出數據科學家還是必須具備基礎數理與資訊工程能力。

張嘉祜說,你也許可以用Excel去處理數據,但如果想要加快資料處理速度的話,程式能力依然是必須的。彭智楹認為不能害怕數字很重要,必須要培養對數字的敏銳度,例如他在念博士時就會用眼睛觀察數列是否有周期性的變化,從中訓練自己對數字的敏銳度,他甚至寫了一個產生各種亂數模型的程式,然後用眼睛一一把每個數字看過一遍,分析影像時也一樣,每張影像他都一一檢視過,「什麼時候要把資料分開或結合看,這都需要經驗。」彭智楹說。

但在工具之外,張嘉祜認為最重要的還是商業嗅覺,現在很多人隨隨便便就說自己會做數據分析會用什麼資訊工具,但沒有商業眼光依然白搭

特質五:跨界合作能力

最後,由於大數據科學家必須膽大心細又要天馬行空,邏輯好之外還得要融合自身生活經驗,這些特質要在一個人身上面面俱到非常困難。張嘉祜指出,跨界合作能力在這裡就顯得格外重要,因為不同的產業別需要不同的觀點,如果不懂得傾聽別人的意見,恐怕陷入盲點而不自知,跨界合作有助於發現不同面向切入分析,更有效率地做決策

和沛科技創辦人翟本喬曾說:「在大數據領域的英雄不是圖靈,也不是克勞德·夏農(發明資訊概論的人),而是福爾摩斯,這種有點自閉但能夠看出事情關鍵的人,如果只是因為大數據很紅就去學這些工具,你學這些工具就是賺22K的,把專業領域做好,你可以賺2200K。」因此,與其盲目追隨大數據熱潮,不如看看自己是否具備這些特質以及專業,再來決定要不要加入大數據淘金潮。

@@ACTIVITYID:513@@

關鍵字: #大數據
往下滑看下一篇文章
健身產業下一個 20 年靠「數據力」:健身工廠攜手 Teradata、擎昊科技,打造智慧經營新典範
健身產業下一個 20 年靠「數據力」:健身工廠攜手 Teradata、擎昊科技,打造智慧經營新典範

在健身產業競爭日益激烈的今天,品牌之間的差距,早已不再取決於場館規模、器材數量或課程內容,而是誰能更貼近會員需求、誰能運用數據看懂會員的一舉一動,打造更精準、更個人化的服務體驗。

對於這一點,台灣第一家掛牌上市、旗下擁有健身工廠等知名品牌的連鎖運動健身龍頭 —— 柏文健康事業,有著比同業更深刻的體悟。過去 20 年,柏文以「持續創新、重視會員需求」為核心,在台灣健身市場站穩腳步。而面對產業全面走向數位化的新競局,柏文選擇攜手 Teradata 與擎昊科技建置企業數據中台,打破內部數據孤島,將分散在各系統的資訊整合為可以被運用的營運智慧。這不只是一次技術升級,更是從「經驗驅動」邁向「數據驅動」的戰略轉型,為柏文在下一個 20 年持續領跑市場注入關鍵動能。

柏文描繪 20 年健身版圖的 2 大關鍵

自 2006 年在高雄成立第一間健身中心「Fitness Factory 健身工廠」以來,柏文的營運規模就穩步成長,如今健身工廠全台已有 83 間分店、會員數逼近 40 萬大關,躍居台灣前二大健身品牌。柏文健康事業董事長陳尚義認為,深耕在地、持續創新,是柏文能在競爭激烈的市場中持續成長的兩大關鍵動能。

擎昊科技
柏文健康事業董事長陳尚義認為,深耕在地、持續創新,是柏文能在競爭激烈的市場中持續成長的兩大關鍵動能。
圖/ 數位時代

第一是深耕在地、理解使用者的真正需求。柏文非常重視會員體驗,在規劃任何服務與課程時,都從在地使用者的實際需求出發。以團課為例,多數健身場館選擇向國外購買課程授權,健身工廠卻決定推出自有團課品牌 FORCE,由專業團隊設計課程且每季推出不同主題,「雖然成本較高、也比較花時間,卻可以確保課程內容更符合台灣人的體能特性與運動需求,」陳尚義認為,這種重視在地需求的思維,正是柏文與會員建立深度連結的關鍵。

第二是持續創新產品與服務。近年來,柏文以「運動休閒」為核心,不斷推出新的品牌與服務。在場館端,成立各具特色的主題運動場館,例如以彈跳床為主的 Crazy Jump 肖跳、射擊對戰遊戲場 KILL ZONE、保齡球館「滾吧 LET'S ROLL」及 Sklub 運動俱樂部。其中,Sklub 青海店為高雄鼓山區首座全齡運動場館,設有室內頂級羽球場、桌球場、國際級楓木籃球場與多樣化運動課程,而 2025 年 11 月開幕的桃園桃鶯店,更是桃園愛好羽毛球人士的首選。

在服務端,則延伸出協助運動後修復的 SPA 個人工房、運動按摩 Buddy Body 等服務。此外,柏文亦與營養師合作推出營養管理與線上課程,近期更籌備成立電商平台,方便會員與非會員選購運動健康相關商品,逐步擴大「運動 x 生活」的服務版圖。

數位化升級:從服務體驗到營運管理全面轉型

伴隨營運規模的不斷成長,柏文也開始導入各種數位工具,以提升會員服務品質與營運管理效率。舉例來說,會員入場的身份辨識機制,已經從早期的刷條碼會員卡,升級到現在的人臉辨識直接進場。又如,在內部營運流程上,從會員管理、財務到行銷活動等,亦全面透過系統來優化作業效率。

這些數位系統累積的大量數據,成為陳尚義日常決策的重要依據。陳尚義分享,自己經常拿起手機查看當日總營收、來店會員數等營運指標,也會比較各場館的營收與來客數變化。一旦發現某館的數據與預期或平常趨勢不符,便會立即請相關人員說明情況,確認異常原因。

「透過數據定位問題,再及時進行分析與改善,才能確保營運狀況維持在最佳狀態。」陳尚義說,更重要的是,這些數據也成為柏文持續創新的基礎,透過數據掌握會員的行為模式和滿意度,如:會員的運動頻率、續約率等,可以作為發展新產品或新服務的決策依據,使其更貼近會員需求。

擎昊科技
柏文健康事業董事長陳尚義指出,透過數據定位問題,再及時進行分析與改善,才能確保營運狀況維持在最佳狀態。
圖/ 數位時代

導入 Teradata 數據中台,柏文邁向即時決策的關鍵一步

然而,隨著數據應用越來越深,現有系統的限制也逐漸浮上檯面。首先,數據散落在 POS、CRM、ERP 等不同系統,無法有效整合,導致使用者必須在眾多介面間來回切換,相當不方便,也容易影響決策的準確性。其次,系統效能不足,在查詢與分析大量數據時,往往要等候一段時間,導致營運報表無法即時產出,管理層難以掌握最新狀況。第三,報表製作流程高度依賴人工作業,需從多個系統匯出資料再自行整合,不僅耗時費力,也容易出現錯誤。

為克服上述挑戰,柏文決定導入 Teradata AIDW 數據平台,將會員資料、IoT 健身設備、POS 交易資料等數據,全面整合至單一資料庫,徹底解決數據孤島的問題。由於 Teradata AIDW 採用 MPP 架構,可以大幅提升資料整理、分析與查詢效能,再搭配帆軟的報表與視覺化工具,使用者可透過儀表板、動態報表或 API 快速掌握分析結果,讓決策過程更即時、更精準。

柏文資訊長黃靜雯表示,選擇 Teradata 的關鍵原因在於其成熟度與穩定性。「Teradata 的效能非常強大,平行運算能力是經過市場驗證的,而且系統本身具備備援機制,不必擔心單一設備故障的風險。」這讓柏文後續能夠更安心地推動大規模的數據與 AI 應用。

擎昊科技
Teradata 的數據顧問不僅具備扎實的技術能力,更累積了豐富的產業經驗,為柏文的數據應用帶來更多啟發與想像空間。(由左至右)柏文健康事業資訊長黃靜雯、柏文健康事業董事長陳尚義和Teradata台灣總經理陳盈竹。
圖/ 數位時代

除了 AIDW 數據平台,Teradata 亦透過數據整理師服務,協助柏文將不同系統、不同格式的資料進行標準化與模型化,為其推動跨系統的數據整合與應用帶來很大的幫助。黃靜雯補充指出,Teradata 的顧問團隊不僅具備扎實的技術能力,更累積了豐富的產業經驗,能從業務視角提出建議,為柏文的數據應用帶來更多啟發與想像空間。

Teradata 台灣總經理陳盈竹則認為,柏文作為健身產業的龍頭,願意率先導入數據中台並積極擁抱 AI 應用,是極具前瞻性的決策。「面對AI浪潮的快速迭代,我認為柏文做了關鍵決策,透過前期約 6 至 10 個月的時間完善數據建設,作為支撐AI發展的核心競爭力!」陳盈竹強調。

擎昊科技
Teradata台灣總經理陳盈竹則認為,柏文作為健身產業的龍頭,願意率先導入數據中台並積極擁抱 AI 應用,是極具前瞻性的決策。
圖/ 數位時代

數據建設就像是城市的下水道工程,是 AI 應用的發展基礎,而作為 Teradata 原廠授權總代理的擎昊科技,則在這座下水道工程中扮演關鍵角色,負責伺服器運算、儲存架構與網路環境建置等任務,「我們結合 Teradata 的技術與自身的整合能力,為柏文打造更穩定的 IT 基礎建設,確保後續的數據分析能在最可靠的環境中運行。」擎昊科技資深協理杜錦祥說。

陳尚義表示,過去許多決策仰賴現場觀察或管理直覺,但未必能量化決策背後的成本與效益;未來希望透過完善的數據中台,不僅能掌握營運脈動,也能將那些過去難以量化的隱形成本具體呈現,進一步評估每項投入是否帶來實質價值。「以數據與人工智慧取代經驗判斷,將會是柏文邁向下一個 20 年的關鍵競爭力。」陳尚義強調。

圖/ 擎昊科技
圖/ Teradata
圖/ 柏文健康事業

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓