[東京直擊]Google 下一個發展重心:機器學習
[東京直擊]Google 下一個發展重心:機器學習
2015.11.11 | Google

11月10日在日本東京舉辦的Google亞太活動Alphabet集團執行董事長施密特(Eric Schmidt)視訊出席活動時,表示Google 的下個發展重心 - 將是機器學習。

Google 機器學習已經從實驗室裡的技術發展成有數十億使用者的科技,現在看機器學習的應用面就像在 2010 年時看行動應用,機器學習已經從理論進化成實際應用。Google 搜尋、YouTube、Google 翻譯、Google Play 都已經運用機器學習技術。

Google不斷強調機器學習不是單單一種模式,而是一種工具,能夠廣泛應用在生活各種領域的重要革命性工具。「機器學習」思考,讓員工不在做機器可以執行的工作,把大腦從日常Routine中解放出來,執行更具創造力,想像力的工作。這不僅是Google產品端的革命,也是內部公司文化的革命。

施密特大膽地說,「如果你希望你的數據安全,那就存到Google來。」數據搜集是機器學習的關鍵,Google非常注重數據管理,隱私保護一直是Google很在乎的議題,有強大加密技術保護數據。

但從 2014 年起歐洲地區吹起一股「反美科技」浪潮。以 Google 等科技巨擘為首,等美國科技公司侵犯隱私,蒐集他們的線上搜尋資料,用來宣傳廣告。而當Google轉向機器學習時代,需要大量多元的資料訓練機器,數據是外界對Google機器學習領域的最大質疑,尤以歐洲為甚。雖然Google再三強調不會將使用者的數據商業應用,但這也許是「搜集」與「使用」上的定義不同,這也是Google在歐洲面臨的最大挑戰。以下是施密特演說重點整理:

圖說明

(圖說:Alphabet 集團與董事會執行董事長施密特。圖片來源:Google)

1.我不認為要讓電腦模仿人腦

我不認為要讓電腦模仿人腦,大腦神經元太多,模仿大腦做人工智慧太複雜。但我們可學習大腦如何記憶,利用在機器學習上。機器學習對我而言,重點在讓人類不用再做機械性事物,如製造業產線工人或打字員等。

因為電腦有大量運算能力,運算的效果如果比人更好,像開車這件事,那就教給機器開就好了。或是讓機器來做醫生,是不是比人更好?提供更準確的診斷? 因為機器不會疲勞但是人會。

機器學習需要投入大量技術與資源,要把問題轉換成機器學習能解決的題目並不容易,然而一但轉換成功,將會顯著成長,多餘的工作將會消失。

2.邪惡機器人總出現在電影中

外界總認為當機器人越來越像人,機器人可能對地球造成危害,就像電影《關鍵報告》一樣。但我認為只有電影才把機器人描述地這麼邪惡。在實際應用中,人類可以透過演算法控制機器人執行正常任務。

人類創造的機器人應該都是好的機器人,可以幫忙打掃,澆花、做家事,這種機器人是大家最想要的。

3.下一代的程式設計人才必須具備有很好的數學能力

工程師不再需要自己Coding,而讓電腦去寫,這是下一代的程式設計人員的挑戰。下一代的程式設計人才必須具備有很好的數學能力,因此注重數學教育的亞洲人才比歐美人才更具競爭力。

我最近去了一趟韓國與中國。韓國經濟在放緩,因此強調創業精神振興經濟,推行機器學習創業。在中國我花很多時間拜訪政府部門,雖然很多人說中國經濟增長減緩,但中國的經濟潛能還是非常之大的。

機器學習最大的挑戰就是全球上網的人還不夠多,要有更多網路覆蓋,讓貧窮的亞非國家與弱勢群體能上網, 網路是一種巨大的現代化力量。

4.電腦視覺(Computer Vision)的診斷辨識即將超越人類視覺

去年九月,Google 研究團隊「GoogLeNet」發表了一篇關於神經網路(neural network)的論文,名為「全面啟動」(Inception),因為這個神經網路的運作原理就類似電影「全面啟動」中夢境的分層概念。系統可以透過 22 層的電腦視覺運算,找出最相關的圖像,捨棄不重要的部分,進而分析出不同的物件。

舉例來說,當 Google 相簿辨識一隻貓的照片時,首先會辨識出這是一隻「貓」的線條與顏色,接著發現眼睛與耳朵,經過這樣一層層複雜的偵測,最後完成辨識。

機器學習也將比人類更能預測使用者喜好。例如,雖然我的朋友們可以透過音樂類的 App 推薦我最新的當紅歌曲,但是人會跟不上流行,而機器卻永遠能提供時下最熱門的音樂。

跨領域的機器學習將有更顯著的效果:機器學習將能有效改善其他技術現有的問題,或是加快解決問題的速度。

延伸閱讀:
1.Alphabet集團執行董事施密特:無人車和機器人都不算什麼,機器學習才是我們在做的事。
2.施密特:機器學習五年後將應用到所有產業

往下滑看下一篇文章
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?

AI 與數據正快速落地至各行各業,從製造、金融、電信、醫療到零售,應用速度不斷加快。但在每年交易規模至少新台幣 1900 億元的商用地產領域,卻長期受到數據破碎且不透明的限制,只能仰賴人力蒐集資訊,再憑直覺和經驗去解讀資訊、做出決策,使 AI 潛在價值難以真正發揮。為回應產業轉型的核心痛點,方睿科技首度舉辦「商用地產生態系年會 2026 Raise Day」,以開放式平台為核心,串聯專業地產服務商、空間相關企業服務商、產業專業人士等多元角色,勾勒出 B2B 企業服務生態系的全貌,希望能透過科技促進數據流動,為商用地產企業協作模式開啟新的可能性。

方睿科技
方睿科技首度舉辦 2026 Raise Day,以開放式平台為核心串聯多元角色,推動商用地產邁向產業共好的新階段。
圖/ 數位時代

方睿科技雙軌策略,讓 AI 成為商用地產的決策引擎

方睿科技創辦人暨執行長吳健宇指出,在 AI 時代,人應該專注於「最有價值」的工作;然而在商用地產業中,專業人士卻有約 70% 的時間耗費在資料蒐集與整理上,真正用於判斷與決策的時間僅約 10%。方睿科技希望翻轉這樣的時間分配,讓人力從低價值的資料處理中解放,將更多心力投入在判斷、溝通與決策等創造價值的商業活動。

方睿科技
方睿科技創辦人暨執行長 吳健宇
圖/ 數位時代

為此,方睿科技提出兩條實踐路徑。第一條是建構出具備完整性、易用性與進化性的商用地產智慧平台,運用 AI 技術,將過去產業中破碎、非結構化的資料,重塑為可被運算、可驗證的標準化數據,並結合圖表與互動式介面,讓使用者能夠快速得到完整市場資訊,實現「用戶即專家」的目標。

第二條則是推動生態系聯盟,將不動產視為企業服務的核心載體,串聯設計、家具、搬遷、清潔等多元服務夥伴,使空間不再只是靜態標的,而是承載案例、服務與數據回饋的生態系節點。透過生態系夥伴累積的實務資料與服務紀錄,平台得以發展「資料即推薦」模式,推動商用地產從單點交易,邁向可擴張的 B2B 服務網絡。

獨創「資料飛輪」機制,實現用戶即專家目標

在 AI 模型日益普及的當下,真正的競爭關鍵已不在模型本身,而是能否有效率地收集資料、提高資料品質,並將其與實際決策流程緊密結合。為此,方睿科技獨家設計出一個由「資料收集、資料精煉、專家把關、決策反饋」組成的資料飛輪,回應商用地產長期面臨的資料破碎與決策效率低落問題,成為方睿科技實踐願景的第一條路徑。

方睿科技技術長郭彥良進一步說明,資料飛輪機制的運作架構。首先在資料收集階段,必須系統性蒐集公開資料、內部檔案與報告,並透過 AI 協作將圖片等非結構化資訊轉換為可用的結構化數據。接著進入資料精煉,透過資料清洗與實體對齊,將原始資訊從單純的可閱讀升級為可比較、可推論的決策依據。第三步專家把關,則引入不動產專家進行校正與產業判讀,補上模型難以理解的規則與慣例,確保關鍵數據的正確性。最後的決策反饋階段,藉由收集使用者提問與行為,檢視現有資料是否足夠精準,再回到專家校正與補齊流程,使整個系統能隨使用頻率提升而持續進化。

在資料飛輪的運作基礎上,方睿科技正積極研發商用地產智慧平台 PickPeak。郭彥良表示,PickPeak 並非單純的物件搜尋工具,而是結合深度資料與 AI 的決策輔助平台。使用者可透過自然語言互動,提出人數、預算、區位、產業屬性等多重條件,再由系統動態生成可比較、可驗證的選址方案,真正將 AI 從「回答問題的工具」,轉化為「陪伴決策的數位專家」。

方睿科技
方睿科技技術長 郭彥良
圖/ 數位時代

創新 Data to win 模式,讓 AI 深入商用地產各階段決策流程

不過,單靠數據整合與 AI 應用仍不足以支撐產業全面升級,因此,方睿科技提出的第二條路就是,推動產業生態系聯盟,整合商用地產市場上不同角色的數據,讓 AI 能夠真正成為商用地產決策時的智慧引擎。

方睿科技不動產知識創新中心總監曾凡綱指出,目前在企業、房東或物業主與各類服務供應商之間,缺乏有效的整合機制,導致企業在選址與空間規劃過程中,難以快速找到真正合適的服務與解決方案,形成明顯的產業斷點。

為解決這些斷點,方睿科技提出「Data to win」模式,以資料取代傳統「Pay to win(付費買廣告)」思維,讓真正具備經驗與實績的服務夥伴,在適當的決策節點被看見。

曾凡綱說明,在廣告投放效益越來越低的情況下,企業服務商面臨的問題已不只是「如何曝光」,而是「如何在對的地方被看見」,這將是未來的市場勝出指標;而 Data to win 正好可以協助企業服務商建立此能力,方睿科技將生態系夥伴所擁有的案例、服務紀錄與產業知識等資料,經過去識別化與結構化處理後,再嵌入企業決策流程中,讓推薦不再來自廣告投放,而是真實、可被驗證的使用經驗,透過這樣的機制,不僅提升企業決策的準確度,也能同步放大生態系夥伴在合作中的實質價值。

舉例來說,方睿科技整合辦公傢俱夥伴 Backbone 班朋實業長期累積的辦公室規劃案例與平面圖資料,讓企業在選址階段,就能同步評估空間規劃方案,加速決策流程。又如,整合出行服務夥伴 USPACE 悠勢科技的服務資料,並呈現在地圖上,協助企業評估辦公據點的交通便利性,優化員工日常通勤與出行體驗。此外,平台也可整合大樓的 ESG 認證、公共設施與服務層資訊,協助企業快速篩選符合需求的辦公大樓,提升進駐媒合效率。

方睿科技
方睿科技不動產知識創新中心總監 曾凡綱
圖/ 數位時代

「Raise Day 只是這場變革的起點。」吳健宇強調,方睿科技已經透過投資與合夥模式,將布局延伸至專業地產服務與空間經營領域,至今旗下已有商用不動產仲介、顧問與估價等專業服務的宇豐睿星,以及聚焦商用地產代銷市場的希睿創新置業。透過直接參與第一線實務運作,方睿得以更深入理解產業真實痛點,讓科技不只是工具,而能真正回應實際決策與服務需求。

此外,方睿科技未來也將持續擴大「商用地產 x 企業服務生態系」聯盟,目前包括 Backbone、USPACE、IKEA For Business、潔客幫等企業服務夥伴已率先加入;接下來,方睿科技將邀請更多擁有關鍵數據與專業能力的企業服務商加入,讓數據在安全、可控的前提下流動,進一步釋放商用地產在選址、營運與企業服務等全生命週期中的結構性價值,為產業轉型啟動下一個關鍵階段。

方睿科技
右起方睿科技共同創辦人暨營運長陳致瑋、USPACE悠勢科技共同創辦人暨執行長宋捷仁 、Backbone班朋實業創辦人暨執行長廖家葳,透過企業服務生態系合作共同為產業啟動下一個關鍵階段。
圖/ 數位時代

方睿科技官網: https://www.funraise.com.tw

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓