[東京直擊]Google 下一個發展重心:機器學習
[東京直擊]Google 下一個發展重心:機器學習
2015.11.11 | Google

11月10日在日本東京舉辦的Google亞太活動Alphabet集團執行董事長施密特(Eric Schmidt)視訊出席活動時,表示Google 的下個發展重心 - 將是機器學習。

Google 機器學習已經從實驗室裡的技術發展成有數十億使用者的科技,現在看機器學習的應用面就像在 2010 年時看行動應用,機器學習已經從理論進化成實際應用。Google 搜尋、YouTube、Google 翻譯、Google Play 都已經運用機器學習技術。

Google不斷強調機器學習不是單單一種模式,而是一種工具,能夠廣泛應用在生活各種領域的重要革命性工具。「機器學習」思考,讓員工不在做機器可以執行的工作,把大腦從日常Routine中解放出來,執行更具創造力,想像力的工作。這不僅是Google產品端的革命,也是內部公司文化的革命。

施密特大膽地說,「如果你希望你的數據安全,那就存到Google來。」數據搜集是機器學習的關鍵,Google非常注重數據管理,隱私保護一直是Google很在乎的議題,有強大加密技術保護數據。

但從 2014 年起歐洲地區吹起一股「反美科技」浪潮。以 Google 等科技巨擘為首,等美國科技公司侵犯隱私,蒐集他們的線上搜尋資料,用來宣傳廣告。而當Google轉向機器學習時代,需要大量多元的資料訓練機器,數據是外界對Google機器學習領域的最大質疑,尤以歐洲為甚。雖然Google再三強調不會將使用者的數據商業應用,但這也許是「搜集」與「使用」上的定義不同,這也是Google在歐洲面臨的最大挑戰。以下是施密特演說重點整理:

圖說明

(圖說:Alphabet 集團與董事會執行董事長施密特。圖片來源:Google)

1.我不認為要讓電腦模仿人腦

我不認為要讓電腦模仿人腦,大腦神經元太多,模仿大腦做人工智慧太複雜。但我們可學習大腦如何記憶,利用在機器學習上。機器學習對我而言,重點在讓人類不用再做機械性事物,如製造業產線工人或打字員等。

因為電腦有大量運算能力,運算的效果如果比人更好,像開車這件事,那就教給機器開就好了。或是讓機器來做醫生,是不是比人更好?提供更準確的診斷? 因為機器不會疲勞但是人會。

機器學習需要投入大量技術與資源,要把問題轉換成機器學習能解決的題目並不容易,然而一但轉換成功,將會顯著成長,多餘的工作將會消失。

2.邪惡機器人總出現在電影中

外界總認為當機器人越來越像人,機器人可能對地球造成危害,就像電影《關鍵報告》一樣。但我認為只有電影才把機器人描述地這麼邪惡。在實際應用中,人類可以透過演算法控制機器人執行正常任務。

人類創造的機器人應該都是好的機器人,可以幫忙打掃,澆花、做家事,這種機器人是大家最想要的。

3.下一代的程式設計人才必須具備有很好的數學能力

工程師不再需要自己Coding,而讓電腦去寫,這是下一代的程式設計人員的挑戰。下一代的程式設計人才必須具備有很好的數學能力,因此注重數學教育的亞洲人才比歐美人才更具競爭力。

我最近去了一趟韓國與中國。韓國經濟在放緩,因此強調創業精神振興經濟,推行機器學習創業。在中國我花很多時間拜訪政府部門,雖然很多人說中國經濟增長減緩,但中國的經濟潛能還是非常之大的。

機器學習最大的挑戰就是全球上網的人還不夠多,要有更多網路覆蓋,讓貧窮的亞非國家與弱勢群體能上網, 網路是一種巨大的現代化力量。

4.電腦視覺(Computer Vision)的診斷辨識即將超越人類視覺

去年九月,Google 研究團隊「GoogLeNet」發表了一篇關於神經網路(neural network)的論文,名為「全面啟動」(Inception),因為這個神經網路的運作原理就類似電影「全面啟動」中夢境的分層概念。系統可以透過 22 層的電腦視覺運算,找出最相關的圖像,捨棄不重要的部分,進而分析出不同的物件。

舉例來說,當 Google 相簿辨識一隻貓的照片時,首先會辨識出這是一隻「貓」的線條與顏色,接著發現眼睛與耳朵,經過這樣一層層複雜的偵測,最後完成辨識。

機器學習也將比人類更能預測使用者喜好。例如,雖然我的朋友們可以透過音樂類的 App 推薦我最新的當紅歌曲,但是人會跟不上流行,而機器卻永遠能提供時下最熱門的音樂。

跨領域的機器學習將有更顯著的效果:機器學習將能有效改善其他技術現有的問題,或是加快解決問題的速度。

延伸閱讀:
1.Alphabet集團執行董事施密特:無人車和機器人都不算什麼,機器學習才是我們在做的事。
2.施密特:機器學習五年後將應用到所有產業

往下滑看下一篇文章
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作

現代人手機不離手,通勤時滑短影音、午休追串流影劇、下午開視訊會議,網路影音應用成為工作與生活的普遍情境。然而,一旦畫面卡頓、畫質不穩,或聲畫不同步,使用體驗立刻打折,甚至影響工作效率與專業判斷。

也因此,網路品質不再只是「快不快」的問題,更關乎能否在高使用量的日常情境下,維持穩定、連續的表現;對此,第三方評測也採用更貼近使用者情境的方式衡量網路體感。而 Opensignal 最新報告指出,台灣大哥大在影音體驗相關項目是業界唯一同時拿下「影音體驗」與「5G 影音體驗」雙項獎項的電信商,其中,關鍵的差異是什麼?

為何「影音體驗」是網路品質的關鍵指標?

愈來愈多消費者入手旗艦機,追求的不只是硬體規格,還有流暢的 AI 應用與多工協作。然而,無論是視訊即時翻譯或雲端會議,這些高階功能都有一個共同前提:網路必須穩定。一旦網路品質不佳導致畫質下降或音畫不同步,旗艦級的 AI 功能將形同虛設。

這也意味著,檢驗網路價值的標準已經改變。如今,不能只看單點測速的瞬間峰值,更重要的是高負載情境下的耐力表現。因此,比起單點測速,影音體驗會是更完整的測試標準,直接挑戰了網路在室內深處、移動途中或人潮聚集時的網路實力;而唯有在長時間串流下依然不卡頓、不降畫質,才稱得上是高品質的連線。

換言之,隱身在硬體背後的電信商,才是發揮旗艦機性能的關鍵;唯有透過最佳網路品質,才能讓手中的旗艦機既是規格領先、也是體驗領先。

唯一影音體驗雙料冠軍,Opensignal 權威認證的有感體驗

雖然相較於測速數據,影音體驗更貼近日常使用,但也更難量化。對此,國際權威認證 Opensignal 的「影音體驗分數」,依循 ITU 國際標準,透過真實用戶裝置在行動網路上進行影音串流的實測數據,觀察不同電信網路在實際使用情境下的表現。

簡單來說,評測聚焦三項核心指標:影片載入時間、播放期間的卡頓率,以及畫質(解析度)是否能穩定維持。使用者從開始播放到持續觀看的整體品質,分數以 0–100 呈現,分數愈高,代表在三項指標的表現愈佳。相較於單點測速,這類評測更能呈現長時間、高使用量下的網路品質。

人流情境不降速.jpg
圖/ 數位時代

而在今年最新公布的 Opensignal 評測中,台灣大哥大獲得「影音體驗」獎項唯一雙料冠軍。其中,「整體影音體驗」為全台獨得第一名,「5G 影音體驗」則與遠傳並列第一。

之所以能在影音體驗拔得頭籌,關鍵在於台灣大哥大目前是全台唯一整合 3.5GHz 頻段 60MHz 與 40MHz、形成 100MHz 總頻寬的電信業者,亦是現階段全台最大 5G 黃金頻寬配置。頻寬愈寬,代表單位時間內可傳輸的資料量愈大;在大量使用者同時進行影音串流、視訊互動的狀態下,更能維持穩定傳輸、減少壅塞發生機率。

台灣大獲權威認證,NRCA技術撐起穩定基礎

除了頻寬帶來的流量優勢,台灣大哥大也採用「NRCA 高低頻整合技術」,也就是透過高低頻協作,讓 3.5GHz 負責高速傳輸、700MHz 補強覆蓋與室內連線,改善室內深處與移動情境的訊號落差,提升連線連續性。

同時,為了讓住家、通勤動線、商圈與觀光熱點等高使用場域維持穩定表現,台灣大哥大已在全台超過213個住宅、觀光及商圈熱點完成 100MHz 布建,提升人流密集區的網路覆蓋率。

5G高速(小).jpg
圖/ dreamstime

值得注意的是,在今年的 Opensignal 評比中,台灣大哥大還拿下了「5G 語音體驗」與「網路可用率」兩項第 1 名,累計獲得 4 項獎項。這意味著不僅具備影音體驗優勢,在語音互動與連線率等關乎用戶日常應用的基礎指標,皆有亮眼成績。

尤其,隨著影音與即時互動成為新世代的工作常態,網路品質的重要性只會持續上升。無論是遠距協作所仰賴的視訊與畫面共享即時同步,內容創作對直播與即時上傳連續性的要求,或是 AI 視訊互動、即時翻譯與會議摘要等新應用,都高度依賴低延遲與穩定的資料傳輸。網路品質因此不再只是連線條件,更是支撐內容生產、協作效率與新應用落地的基礎能力,甚至直接牽動競爭力。

而台灣大哥大經 Opensignal 認證、於多項關鍵指標領先業界,不僅將成為 AI 時代的重要後盾,也讓使用者能更充分發揮高階手機的效能,把「快、穩、滑順」落實在每天的工作與生活中。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓