如果程式設計也有國際奧林匹亞競賽,拔得頭籌的會是哪個國家?
如果程式設計也有國際奧林匹亞競賽,拔得頭籌的會是哪個國家?

假如程式設計如數學與物理等科學一般,也有國際奧林匹亞競賽的話,成為當中佼佼者會是哪個國家呢?(編按:針對電腦程式設計已有國際資訊奧林匹亞(IOI)競賽)在我們的印象中,出產最多程式開發者的國家莫過於美國與印度,但根據程式設計解題網站 HackerRank 最新研究指出,擁有最擅長程式設計人才的國家,其實並非美國與印度。

HackerRank 為程式設計解題網站,網站中將不同的程式領域分門別類,針對 15 種領域(domain)提供多樣的程式設計題目,包括 Python、algorithm(演算法)、security(資安)與 distributed systems(分散式系統)等各種類型,讓開發者進行挑戰與解題,協助其增進程式設計的功力,此外,Facebook 與 Airbnb 等科技公司也會透過 HackerRank 招募開發者加入公司。

HackerRank 上的開發者排名,是取決於開發者解題時的準確度與速度,目前為止網站上已有 150 萬名開發者參與排名,而 HackerRank 最新公布的研究,便是依據網站上已參與解題的開發者來做排名,包括哪個國家擁有最擅長程式設計的開發者、哪種解題領域最熱門、各種領域的解題高手分別為哪一國及各國較喜愛哪種程式設計領域。

HackerRank 的研究結果指出,擁有最擅長程式設計人才的國家為中國,排名緊接在後的是俄羅斯,而第 3 至第 5 名分別為波蘭、瑞士與匈牙利,至於台灣也進入前十名的榜中,排在日本之後、為第 7 名。在 HackerRank 網站中參與排名人數最多的美國與印度開發者,排名卻僅為 28 名與 31 名,連前 20 名都未沾上邊,不過,有趣的是,以目前的狀況而言,排名第 1 至第 27 名國家的開發者們,幾乎全都為美國企業效勞,所以在現實中美國可算是依舊排名第 1。

Screen-Shot-2016-08-23-at-8.42.39-AM.png
圖/ 科技新報

中國的開發者在數學、函數程式語言與數據結構這 3 種領域挑戰中,表現最為突出;俄羅斯開發者則在最多開發者相互爭鋒的演算法領域拔得頭籌;台灣的開發者在數據結構(排名第 2)、資料庫(排名第 4)、函數程式語言(排名第 5)與演算法(排名第 5)表現較佳。

Screen-Shot-2016-08-23-at-8.51.09-AM.png
圖/ 科技新報

近年來,全球掀起程式設計的教育浪潮,在擁有最擅長程式設計開發者排行榜前十名中的國家也是如此。排名第 1 的中國,近來學齡前兒童的程式語言課程漸趨熱門;俄羅斯則是在蘇聯時期,便已針對中學學生加強數學教育的訓練。此外,歐盟中也有 15 個國家在課程中納入程式設計。而我國也將程式設計納入 107 課綱,也就是 2018 年起,程式設計成為國中與高中的必修課程,而國小階段則是進行融入性的教學規劃。

Which Country Would Win in the Programming Olympics?

(首圖來源:Flickr/jeanbaptistepari CC BY 2.0)

本文授權轉載自:科技新報

往下滑看下一篇文章
決策桌上的虛擬團員:臺大 EiMBA 如何將 AI 從「工具」升級為「共創夥伴」?
決策桌上的虛擬團員:臺大 EiMBA 如何將 AI 從「工具」升級為「共創夥伴」?
2025.12.09 | 創新創業

「過去我們教育教導學生如何從數據中找出標準答案,但在生成式AI的時代,標準答案往往是最廉價的。」臺大EiMBA執行長李家岩一語道破了這波商業典範轉移的核心。他認為,當資訊獲取邊際成本趨近於零,企業的競爭優勢已不再是單純的「掌握資訊」,而是「如何設計讓 AI 與人共同創造價值的流程」。這不只是一句口號,而是一場正在被驅動的轉型。從課程設計的邏輯重組,到學生創業專題的實戰演練,臺大EiMBA正將校園打造成一個允許失敗、快速驗證的「人機共創實驗場」。

告別標準答案,當教授變成「學習架構師」

「我們不再只是教導知識,而是設計學習。」李家岩指出,臺大EiMBA的課程正在經歷結構性的轉變。現在的教授角色更像是一位「學習架構師(Learning Architect)」,他們的任務不是單向輸出,而是設計出高強度的挑戰與情境,讓學生在解決問題的過程中,自然地將 AI 納入決策迴路 。

以今年新開設的「雙軸轉型與人工智慧」課程為例,這並非傳統的技術概論課,而是場關於商業邏輯的壓力測試。學生不再只是繳交一份靜態的商業計畫書,反而被要求運用生成式 AI 輔助設計商業模式畫布(Business Model Canvas),甚至利用Vibe Coding技術讓不懂程式語言的商管學生,也能透過自然語言與提示工程,快速生成互動式的原型與操作介面來模擬市場反應 。這項技術打破了傳統「文組企劃、理組執行」的藩籬,讓創意能即時轉化為可執行的程式碼。在這個過程中,AI 扮演的角色並非代筆的秘書,而是將概念具現化的加速器,以及最嚴厲的邏輯質疑者。

bn圖說女生.jpg
寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕
圖/ 數位時代

「這是我在課程中學到最深刻的一課,」臺大EiMBA二年級生、寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕分享道。身處近200人新創組織的高階主管,她坦言最初員工對 AI 充滿敬畏,甚至恐懼被取代。但在 EiMBA 的課堂上,她發現 AI 真正的價值在於「攻防」與「鏡像」。「老師設計了一種『沙漏式』的提問邏輯,迫使我們把策略餵給AI後,必須面對它無情的反問。」鐘紫瀕回憶,「這個市場假設有數據支持嗎?」、「你的競爭壁壘在哪裡?」這種高強度的追問,都是AI在對學員提出的挑戰,迫使她必須思考得比AI更深、更遠。「以前我們忙著找答案,現在我們學會如何設計出『連 AI 都沒想過的好問題』。AI就像一面鏡子,映照出我們思考邏輯上的盲點。」

數位孿生實戰,將「感覺」轉化為「數據決策」

除了策略層面的思維激盪,AI 在營運端的落地應用,更是讓許多直覺型創業者經歷了一場痛苦卻必要的轉型。臺大EiMBA一年級生、赤赤子設計師林宏諭對此感觸良多。

身處傳統服裝產業,過去他的經營模式多仰賴美感與經驗,「以前做決策就是憑感覺,甚至忙不過來時,連縫扣子這種小事我都自己跳下去做。」但在李家岩講授的「雙軸轉型與人工智慧」課堂上,他被迫面對冰冷的數據與流程,而這正是李家岩強調的「數位孿生(Digital Twin)」素養 。

台大EiMBA圖說一
赤赤子設計師林宏諭
圖/ 數位時代

在虛擬世界中建立一個與真實工廠或商業流程一模一樣的模型,利用AI進行模擬與預測,是現代智慧製造的核心。對林宏諭而言這意味著必須將腦中抽象的「職人經驗」轉化為AI讀得懂的 SOP。「那段過程就像是被老師架著刀子往前走,非常痛苦,」林宏諭形容,為了讓 AI 能協助優化流程,他必須把每一個步驟定義清楚,無法再用「大概」、「憑感覺」含糊帶過 。

雖然煎熬但成果是豐碩的。當感性的創意被裝進理性的數據框架後,林宏諭發現自己的決策不再是賭博,而是可被驗證的科學。「現在AI不僅幫我理清思緒,更像是團隊的外掛大腦。我開始能鼓勵員工使用AI釋放重複性勞動,讓大家能準時下班,去做更有價值的事。」這正是課程希望帶給學員的轉變,從「事必躬親的管理者」進化為「善用工具的跨域系統設計者」。

bn圖說二.jpg
臺大EiMBA執行長李家岩
圖/ 數位時代

跨域共創,打破同溫層的「破壁效應」

如果說AI是另一位虛擬組團員那麼課堂上原本的同學們,就是來自多重宇宙的戰友。這裡匯聚了醫師、網紅、工程師、律師與傳產二代,如此多元的背景在AI的催化下,產生奇妙的化學反應。

李家岩特別提到了榮獲霍特獎(Hult Prize)肯定的「RiiVERSE」團隊。這個由臺大管院 EiMBA 與 GMBA 學生組成的團隊,成員涵蓋了時尚、行銷與創新創業等不同領域。他們利用舊衣回收再製技術,打造出循環經濟的生態圈。「這就是我們強調的跨域共創。」李家岩解釋,在過去,不同領域的專業人士溝通成本極高,但現在,AI成為了通用的翻譯機與黏著劑。

「AI不僅降低了技術門檻,讓文組生也能做Prototype,更讓理組生也能懂得商業敘事。」在這樣的環境下,創新不再是單打獨鬥,而是像RiiVERSE團隊一樣,結合理性與感性,共同回應全球永續(ESG)的艱鉅挑戰。

為了內心的狂熱,動手去做

然而,隨著AI涉入決策越來越深,一個核心問題浮現:在演算法能預測趨勢、生成文案甚至編寫程式的時代,人類領導者的價值還剩下什麼?「我們教的不是被AI取代,而是擴增智慧。」李家岩眼神堅定地說。他強調,未來的領導者必須具備三項關鍵特質:AI素養、跨域系統設計能力,以及科技人文的反思力 。

其中最關鍵的,是懂得界定「自主邊界(Autonomous Boundary)」。領導者必須清楚判斷:哪些決策該放手讓 AI 自動化?哪些時刻必須保留人類的溫度與價值判斷?「例如在智慧工廠中,AI 可以預測機台何時需要維修保養,但『什麼樣的風險可以接受』、『我們要解決什麼社會問題』,這些涉及價值觀的決策,永遠需要人類來定奪。」李家岩補充道 。

bn圖說三.jpg
寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕(左)/臺大EiMBA執行長李家岩(右)
圖/ 數位時代

在李家岩眼中,真正的創新往往不是來自同類型人才的討論,而是從不同背景、不同世界觀的碰撞中誕生。「一個人能看到的只是片段,跨域合作才能讓問題完整。」他再次提到。對他而言,EiMBA 想培養的不是知道最多的人,而是能讓「各種智慧」一起工作的人。在AI與人類智慧並存的年代,領導者最重要的能力,不是掌握所有答案,而是打造一個能讓答案自然生成的組織環境。「未來需要的領導者是能整合技術與人、懂得跨域系統思考、也能『擇人(含機器人)而任勢』的人。」李家岩說,而這群充滿創業創新的管理者也將在未來商業戰場上奏出人機協作的新樂章。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓