[AI學術]機器學習公不公平?
[AI學術]機器學習公不公平?

演算法公平性(algorithmic fairness)是與大數據、機器學習相關的新興研究主題之一,大約從2015年開始受到媒體報導與關注

這個主題研究的是,當我們開始在醫療、保險、法律、金融或其它領域,運用資料與演算法進行某些傳統上由人進行的決策時,能不能確保演算法的結果符合這些領域應維繫的「公平原則」?

如何避免數學模型學到人類的歧視行為?

其中一個重要議題是反歧視(non-discrimination)。

運用機器學習技術的演算法,都會用到大量的人類活動歷史資料,訓練數學模型進行決策。而過往的人類行為很可能內含偏見與歧視,如何避免數學模型學到人類的歧視行為,是演算法公平性研究的一個重要問題。

這些隱含的偏見與歧視行為,不是把可能造成歧視問題的資料欄位去除或去識別化,就可以消除的。

Google Research Blog這篇文章就舉了一個例子:對於少數群體,很可能我們手上的dataset顯著地缺乏。而機器學習的準確度很大程度取決於訓練資料量的多少,因此「少數族群」就可能較容易被誤判為高風險,而受到不公平的對待。

如果人類社會本來就存在一些偏見與歧視,那麼歧視就不是機器才有的行為,為什麼機器學習領域還要特別關注這個問題呢?

因為機器與自動化可以放大隱含的偏見與歧視,而且放大的程度可能難以控制(參見《大數據的傲慢與偏見》一書),因此避免機器複製這些行為,對於擴大機器學習的運用與社會安定是重要的。

目前在這個主題上的研究,大部份在設計公平的分類演算法(classifier),方法通常是對「公平」這個概念提出一個數學定義,再找出一個可行的演算法或訓練方法。少部份研究如Skirpan et al(2017)[1]則試圖擴大公平性研究的範圍。

Skirpan等人認為「公平」的內涵會隨著討論的脈絡而改變,必須要看是關於誰?是什麼群體?在什麼時間?如何達成公平來考慮一個演算法是否公平。

因此與前述先確定一個公平的定義再進行討論的研究路線稍有不同。

以下先以Skirpan等人的分類說明一些研究方向的進展,「公平的定義與數學模型」一節再說明幾個常見的公平的數學定義與其研究進展。

公平性研究的範圍

Skirpan et al(2017)這篇論文,把機器學習的公平性研究分為3個大問題:

  1. Fairness of a system問的是:建立一個X這樣的機器學習系統是否公平?例如Bird at el(2016)[2]就從實驗倫理的角度提出對於自動化實驗(autonomous experimentation)的疑慮,認為在建立某些機器學習自動化實驗系統之前,我們需要有機器學習實驗倫理與覆核機制,否則這可能本身是有問題的(類似於對人體進行某些實驗是有倫理問題的)。

  2. Fairness of an approach問的是:要建立一個X這樣的機器學習系統,有沒有技術上公平的作法?這可能是目前最多研究著墨的問題,但Skirpan等人在這裡所列舉的成果,完整度似乎不若公平分類演算法設計的文獻。可參考下一節「公平的定義與數學模型」。

  3. Fairness of a result問的是:建立了一個X這樣的機器學習系統之後,它產出的結果是公平的嗎?這相當於事後補救,用黑箱測試的方式檢驗機器學習系統需不需要修正。在美國,由於再犯預測模型(recidivism prediction system)的運用稍早,有不少相關研究。這部份的文獻量(可查詢recidivism prediction與disparity等關鍵詞)不少。

公平的定義與數學模型

這方面的研究常引用經濟學、哲學對於公平概念的操作型定義,討論的對象都是分類演算法。

概念上可以這樣看:集合X是所有要被分類的個體,A是X之中「被保護的」(可能會被歧視的)部份,x是一個任意的個體。那麼有幾種方式定義公平:

  • Fairness through unawareness:忽略個體x是不是在A之中。這等於演算法完全無視「x是否屬於A」這個條件,只用其它條件進行分類。這個方式可能很直觀,但可能反而對非A群體不公平,並且有redundant encoding的問題,因此目前研究上多不採用。

  • Demographic parity(也稱作statistical parity、group fairness):A與非A兩個群體,被分類到各個類別的比例一樣。例如某個行業的從業人口男女比為1:2,那麼受僱用的男女比也應該接近1:2。這個作法可以完全避免redundant encoding,但Dwork et al(2012)[3]指出這可能造成整體看來公平但對個體而言不公平。例如在非A中的個體x可能條件比A之中入選的個體要好,但因為名額限制而沒有入選。

  • Individual fairnessDwork et al(2012)提出這個想法來取代group fairness。概念上是用兩兩比較的方式,也就是「如果x跟y的條件很相近,那麼他們被分類的結果也要很相近」。這個作法要先取一個度量d(x, y) 來表示「x與y兩個個體的條件有多相近」,然後規定愈相近的個體,被分類到各類別的機率分佈要愈接近。這個作法容許Skirpan等人所提倡的不同脈絡下的公平定義,不同專業領域的公平條件可能不一樣。實作上,則可以看成是增加一個訓練時的fairness constraint條件。這個作法可以用linear programming加入優化演算法中。

  • Equal opportunityHardt et al(2016)[4]提出的想法,想法是保障機會均等,也就是「可以入選的人,不論身在A或非A之中,入選的機率都一樣」。這個作法只能保障對於「可以入選」的那部份人是公平的,所以適用於僱用、信用評分(入選的人才核發貸款)這些應用。實作上,Woodworth et al(2017)[5]認為Hardt等人原始論文的作法效用不好,再提出一個效用比較好的作法。Hardt等人的作法不需要重新訓練model,只需要事後修正;Woodworth等人的作法要修改訓練程序。

  • Avoid disparate mistreatmentZafar et al(2017)[6]的想法,目標是讓不同群體的人被誤判的機會相近,所以訓練資料比較少,誤判機會相對高的群體就不會受到差別待遇。這個想法跟equal opportunity非常接近。

Google Research有個視覺化網站可以說明fairness through unawareness(即 「group unaware」)、demographic parity與equal opportunity這些作法的差異。

參考文獻
1. M. Skirpan and M. Gorelick, “The Authority of ‘Fair’ in Machine Learning,” arXiv:1706.09976 [cs], Jun. 2017.
2. S. Bird, S. Barocas, K. Crawford, F. Diaz, and H. Wallach, “Exploring or Exploiting? Social and Ethical Implications of Autonomous Experimentation in AI,” Oct. 2016.
3. C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness Through Awareness,” in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, New York, NY, USA, 2012, pp. 214–226.
4. M. Hardt, E. Price, and N. and Srebro, “Equality of Opportunity in Supervised Learning,” in Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Barcelona, Spain: Curran Associates, Inc., 2016, pp. 3315–3323.
5. B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro, “Learning Non-Discriminatory Predictors,” arXiv:1702.06081 [cs], Feb. 2017.
6. M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi, “Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment,” 2017, pp. 1171–1180.

本文由Pomin Wu授權轉載自部落格Trustable AI — 機器學習公不公平?

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

往下滑看下一篇文章
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作

現代人手機不離手,通勤時滑短影音、午休追串流影劇、下午開視訊會議,網路影音應用成為工作與生活的普遍情境。然而,一旦畫面卡頓、畫質不穩,或聲畫不同步,使用體驗立刻打折,甚至影響工作效率與專業判斷。

也因此,網路品質不再只是「快不快」的問題,更關乎能否在高使用量的日常情境下,維持穩定、連續的表現;對此,第三方評測也採用更貼近使用者情境的方式衡量網路體感。而 Opensignal 最新報告指出,台灣大哥大在影音體驗相關項目是業界唯一同時拿下「影音體驗」與「5G 影音體驗」雙項獎項的電信商,其中,關鍵的差異是什麼?

為何「影音體驗」是網路品質的關鍵指標?

愈來愈多消費者入手旗艦機,追求的不只是硬體規格,還有流暢的 AI 應用與多工協作。然而,無論是視訊即時翻譯或雲端會議,這些高階功能都有一個共同前提:網路必須穩定。一旦網路品質不佳導致畫質下降或音畫不同步,旗艦級的 AI 功能將形同虛設。

這也意味著,檢驗網路價值的標準已經改變。如今,不能只看單點測速的瞬間峰值,更重要的是高負載情境下的耐力表現。因此,比起單點測速,影音體驗會是更完整的測試標準,直接挑戰了網路在室內深處、移動途中或人潮聚集時的網路實力;而唯有在長時間串流下依然不卡頓、不降畫質,才稱得上是高品質的連線。

換言之,隱身在硬體背後的電信商,才是發揮旗艦機性能的關鍵;唯有透過最佳網路品質,才能讓手中的旗艦機既是規格領先、也是體驗領先。

唯一影音體驗雙料冠軍,Opensignal 權威認證的有感體驗

雖然相較於測速數據,影音體驗更貼近日常使用,但也更難量化。對此,國際權威認證 Opensignal 的「影音體驗分數」,依循 ITU 國際標準,透過真實用戶裝置在行動網路上進行影音串流的實測數據,觀察不同電信網路在實際使用情境下的表現。

簡單來說,評測聚焦三項核心指標:影片載入時間、播放期間的卡頓率,以及畫質(解析度)是否能穩定維持。使用者從開始播放到持續觀看的整體品質,分數以 0–100 呈現,分數愈高,代表在三項指標的表現愈佳。相較於單點測速,這類評測更能呈現長時間、高使用量下的網路品質。

人流情境不降速.jpg
圖/ 數位時代

而在今年最新公布的 Opensignal 評測中,台灣大哥大獲得「影音體驗」獎項唯一雙料冠軍。其中,「整體影音體驗」為全台獨得第一名,「5G 影音體驗」則與遠傳並列第一。

之所以能在影音體驗拔得頭籌,關鍵在於台灣大哥大目前是全台唯一整合 3.5GHz 頻段 60MHz 與 40MHz、形成 100MHz 總頻寬的電信業者,亦是現階段全台最大 5G 黃金頻寬配置。頻寬愈寬,代表單位時間內可傳輸的資料量愈大;在大量使用者同時進行影音串流、視訊互動的狀態下,更能維持穩定傳輸、減少壅塞發生機率。

台灣大獲權威認證,NRCA技術撐起穩定基礎

除了頻寬帶來的流量優勢,台灣大哥大也採用「NRCA 高低頻整合技術」,也就是透過高低頻協作,讓 3.5GHz 負責高速傳輸、700MHz 補強覆蓋與室內連線,改善室內深處與移動情境的訊號落差,提升連線連續性。

同時,為了讓住家、通勤動線、商圈與觀光熱點等高使用場域維持穩定表現,台灣大哥大已在全台超過213個住宅、觀光及商圈熱點完成 100MHz 布建,提升人流密集區的網路覆蓋率。

5G高速(小).jpg
圖/ dreamstime

值得注意的是,在今年的 Opensignal 評比中,台灣大哥大還拿下了「5G 語音體驗」與「網路可用率」兩項第 1 名,累計獲得 4 項獎項。這意味著不僅具備影音體驗優勢,在語音互動與連線率等關乎用戶日常應用的基礎指標,皆有亮眼成績。

尤其,隨著影音與即時互動成為新世代的工作常態,網路品質的重要性只會持續上升。無論是遠距協作所仰賴的視訊與畫面共享即時同步,內容創作對直播與即時上傳連續性的要求,或是 AI 視訊互動、即時翻譯與會議摘要等新應用,都高度依賴低延遲與穩定的資料傳輸。網路品質因此不再只是連線條件,更是支撐內容生產、協作效率與新應用落地的基礎能力,甚至直接牽動競爭力。

而台灣大哥大經 Opensignal 認證、於多項關鍵指標領先業界,不僅將成為 AI 時代的重要後盾,也讓使用者能更充分發揮高階手機的效能,把「快、穩、滑順」落實在每天的工作與生活中。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓