台灣清大團隊運用機器學習,從發文動態偵測躁鬱症徵兆
台灣清大團隊運用機器學習,從發文動態偵測躁鬱症徵兆
2018.01.10 | 健康

國立清華大學資訊工程系陳宜欣教授團隊開發一套方法,能從社群網路平台發文動態中,偵測發文者精神狀況,可望用於協助受躁鬱症困擾的人。部分研究成果近日發表於arXiv線上論文預印本資料庫。

躁鬱症有較高自殘風險,及早就醫能改善症狀

躁鬱症又稱為雙極性情感疾患(bipolar disorder),發作時會導致情緒失調,患者會經歷一段情緒亢奮的躁期,變得精力旺盛、睡眠減少,說話滔滔不絕,但接著可能會陷入極端低潮的憂鬱期。躁鬱的成因目前不明,先天基因、後天環境或許都有影響。

躁鬱症有可能導致患者行為極端,自殺、自殘風險較高,但不易早期診斷。如果親友能在患者剛開始出現輕躁、躁症或憂鬱症狀時,及早協助就醫,一般都可有效控制、改善症狀,也能預防極端行為的發生。

運用機器學習,察覺躁鬱發作初期徵兆

清大資工黃彥皓、陳宜欣團隊開發的方法,可從發文動態偵測躁鬱發作的初期徵兆。據該論文引述,躁鬱症有較高的自傷及自殺率,但七成躁鬱症患者都曾先被誤診為其他精神狀況。如果有方法能自動偵測早期徵狀、評估可能有潛在躁鬱的狀況,應該會對患者、親友及照顧者有很大幫助。

研究人員搜集了上萬則推特(Twitter)上的動態發文,這些推特文是2006年到2016年之間,由超過400位曾在推特文中自陳有躁鬱症診斷的患者所發佈。接著隨機抽樣其他人的發文作為控制組,將患者的推特文與控制組的發文互相比較,試圖從發文行為模式中找出一些規律。

團隊分析不同時間發文的情形,並對照發文時間與正常睡眠規律的關係。另外,利用發文頻率估計使用者的「健談」程度。團隊也研究了每則發文內容的用詞,分析其中的情緒成分。比較特別的是,該研究還加入一項新方法,針對發文用字的「音韻特徵」進行語音能量評分計算。研究團隊假設情緒亢奮或憤怒的人會使用「能量強度」較高的字詞。

研究人員接著使用滑動視窗法(sliding-window appraoch),分析每個人推文牆的內容隨時間變化的情形,特別是接近確診時間點的狀況。

最後,研究人員訓練機器學習演算法,綜合各項數據特徵來區分有初期徵兆與無初期徵兆的人。結果顯示,偵測準確度可達91%以上。

該團隊提出的模型,可望協助躁鬱症患者的定期追蹤評估,及早察覺躁鬱發作的徵兆,以給予患者需要的幫助和治療,減低患者做出極端行為的機會,避免發生不可挽回的憾事。

資料來源:arXiv:1712.09183MIT Technology Review維基百科:躁鬱症

往下滑看下一篇文章
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎

騰雲科技持續展現強勁成長,不僅連續五年維持雙位數的營收增幅,更於 2025 年前三季累計營收來到 5.47 億元、淨利 1.03 億元,年成長率高達 67%,顯示騰雲科技已從智慧零售解決方案供應商擴展成為智慧社區、智慧城市解決方案供應商,並持續發揮高毛利、高成長、以智慧場域資料為核心驅動的代理式 AI 解決方案全方位供應商。

騰雲科技是怎麼辦到的?

騰雲科技董事長暨總經理梁基文不藏私分享兩大關鍵:「首先是以 AI 賦能的產品與服務,協助客戶提升效率、優化營收;其次是透過騰雲孵化器與其生態系中新創夥伴協作,打造零售、不動產、製造與數位保險等產業所需的新商務服務。」

以 AI 賦能全產品線,強化客戶黏著度、深化長期關係

梁基文表示:「AI 不是單一產品或立即變現的技術,要能有效消除資訊不對等,需協助企業先將散落的資料整合成數據資產,才能找出能驅動決策的洞察。」因此,要讓 AI 真正落地,需要同時理解產業現況與營運痛點的夥伴,才能把技術與數據轉化為具體價值,成為企業成長的新引擎。

有鑑於此,騰雲科技的策略是推出 AI Agent 平台 –TrendVotex,由深耕百貨零售、商業不動產等產業的專業團隊協助打造符合場景需求的 AI 代理服務。

例如,為百貨零售打造的「AI 品牌行銷專家」透過市場輿論進行趨勢及同業動態分析、以口碑行銷進行品牌塑造、針對會員數據進行自動化文案生成及傳播、針對行銷成果進行效益分析等自動化決策,「AI 招商助理」則能整合商圈熱度、樓層營運狀態等資訊,提出精準的櫃位調整與招商策略。至於針對複合式商業不動產管理場景推出「AI 能源智慧管理」服務,導入 AIoT 終端裝置佈署並運用其感測數據與歷史異常紀錄,預測設備故障風險,協助排程維修,降低停機時間,大幅提升營運績效。

梁基文補充說明:「除了協助企業打造專屬 AI 代理與串接代理式工作流程(Agentic Workflow),我們也推出 Marketing、Content、Sales、Manufacturing 等跨產業可重複使用的 AI 代理模組,加速零售、不動產、製造、旅遊與數位保險服務等產業的導入腳步。」

值得注意的是,為真正發揮、極大化 AI 價值,騰雲科技不僅提供技術,也協助企業梳理流程、整合分散數據,打造可支撐多場景的數據驅動營運中台。

梁基文表示,不只零售業正加速虛實通路整合,製造與金融服務業也十分重視「全通路數據」,例如製造業需要即時掌握生產過程關鍵數據指標與庫存狀況以確保良率及產能、數位保險業則積極深化對顧客旅程的掌握以完善服務能量等,騰雲科技推出「隨開即用」、雲地整合的 AI 平台,讓企業能在多場景中無縫串接數據並兼顧資訊安全,充分展現「From Insight to Intelligence」價值。

例如,協助數位保險整合顧客的「線上資料(如客戶資料、風險判斷」與「線下數據(如客戶活動數據、場域營運數據)」,透過 AI 進行產品推薦、簡化內部核保作業流程,並提供更加順暢的一致體驗,讓保險也能像零售一樣真正做到懂顧客。

「接下來,我們會把在百貨零售與商業不動產驗證過的技術,進一步擴大到製造、數位保險等產業,讓價值放到最大。」梁基文如是說道。

騰雲科技
騰雲科技董事長暨總經理梁基文
圖/ 數位時代

五大技術、四大產業,騰雲科技以孵化器成就下一個十年

梁基文表示:「過去 10 年,我們專注在『新零售・新生活』;接下來將延伸至『新商務・新生活』,透過收購、合資、投資等方式與外部夥伴共創新的成長動能。」

具體做法是以 ABCDE(AI、Blockchain、Cloud、Data、Experience)五大技術為核心,鎖定零售、不動產、製造與金融服務四大產業,透過外部合作與孵化機制強化解決方案的廣度與深度:整合現場設備、門市裝置、POS、排隊系統、取貨流程、感測器與後勤運作,推出 AIoT 智慧場域管理方案,滿足跨場域、跨產業與跨國企業的需求。

例如,協助泰國五星級酒店導入 AIoT 智慧場域管理方案以優化能源設備管理、降低營運成本並提升使用者體驗等。明(2026)年,騰雲科技計畫將 AIoT 智慧場域管理方案推向製造業廠房,協助客戶管理冷氣、燈光等能源設備並進行碳管理,同時,透過監控產線設備的振動與溫度等數據,提供 AI 預判的設備維修時機(Preventive Maintenance),擴大數位與綠色雙軸轉型的綜效。

除以集團力量推廣 AIoT 智慧場域管理方案,騰雲科技亦積極擴大相應的生態體系發展:首先是與跨業夥伴一同延伸 AIoT 智慧場域管理方案 的應用範疇,如與保險業者合資成立數位保險公司以提供 AI-Ready 數位應用方案;其次是建立消費者生態體系以發揮「新商務‧新生活」的相互影響綜效。例如,騰雲科技子公司騰加數位將擴大 AIoT 平台運營版圖,深入零售、商辦與飯店等多元場景,並以此為載體整合數位支付、會員數據與數位內容傳播等應用,藉此強化場域的智慧化能力,以及拓展騰雲解決方案的落地深度與廣度。

「透過 AIoT 智慧場域管理方案、營運中台與 TrendVotex 等產品與服務,我們不僅能更精準回應台灣、日本與東南亞市場在流程自動化、營運效率提升上的需求,也能同步改善大眾的日常體驗,真正落實『新商務・新生活』的共好價值。」關於未來的發展,梁基文如是總結。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓