與「長尾理論」作者Chris Anderson午餐談話筆記
與「長尾理論」作者Chris Anderson午餐談話筆記

編按:7月19日與20日連續兩天,參加「2018 Digital Innovation Forum數位創新論壇」,有機會與「長尾理論」作者克瑞斯・安德森(Chris Anderson)在午餐時間交換彼此對AI等問題的看法,覺得很有意思,所以把它做成紀錄與大家分享。

「2018 Digital Innovation Forum數位創新論壇」是ABAC(APEC企業諮詢委員會(APEC Business Advisory Council))的台北分會與今年11月的APE年度會議主辦國巴布亞新幾內亞的分會,所共同出面辦理的研討會;會中請到了許多網路技術與數位經濟的成功創業家與思想家,分享他(她)們的經驗與看法,非常精彩,從中卻可學到很多新觀念。第二天一早,AppWorks創辦合夥人,也是TiEA理事長的林之晨(Jamie Lin),把台灣比喻為“Wakanda of Asia”,用一些簡單具說服力的數字,相信可讓國際友人對台灣在網路與數位經濟發展上的實力印象深刻。連續兩天的會議,到了第二天聽眾仍然幾乎滿座,就可視為會議成功的指標。

對我個人來說,最有意思的是第二天午餐席上,與「長尾理論」作者安德森(Chris Anderson)相鄰而坐,暢談了一個多小時與AI相關的彼此看法。由於發現安德森似乎對於我的觀點很感興趣並還一路作了筆記,因此覺得或許值得把我們談話內容記錄下來與大家分享。

我們的談話從我請教他「量子計算的空前計算能量,人類將來要如何使用它」的問題開始。他回說「這個問題目前確實還沒有答案;過去的歷史一再證明,科技人員都是把技術可能性變成可行性後,往往不知道也無法處理如何應用的問題,因此剩下的問題就交給創業家去發揮想像力了。」不過,他認為量子計算怎麼說都還比較單純,AI的問題反倒比較嚴肅。於是我們的話題就切換到AI。

我對AI的過去印象

我對AI的接觸,始自30餘年前在美國寫博士論文期間,因回顧研究文獻的關係,曾經淺嚐即止的經驗。那時AI的名詞剛被提出,它的主要內容還是從麻省理工學院維納(Robert Wiener)教授控傳學(cybernetics)或「電腦如何仿真」的觀點下手,基本上是屬於「rule-based」的一套概念。

不過,因為當時電腦的計算能力、儲存容量等客觀條件的限制,在實作上難以獲得重大進展,所以熱潮很快就消退了。一直到最近幾年,因為資通訊能量與容量,以及相關的設置與操作成本早已不可同日而語;而雲端、大數據、IOT、神經網路科學(甚至量子計算科學概念)的快速發展,累積了完全超乎當年想像的成果,所以人們終又重新找回AI這個概念,來取代前不久還常使用的機器人學(robotics)的說法,用來代表最新運算與儲存科技綜合運用的名詞。


在這次研討會中,也有人提醒AI這兩個字,不應翻成Artificial Intelligence,而應翻成Augmented Intelligence;後者的翻法,我認為比較有「人本」思維,值得大家反思。

與安德森AI話題的切入 — — Local vs. Global Optimum

AI可從許多不同的角度切入來討論。由於我自己長期探索的學術問題之一是決策 — — decision(名詞)與decision-making動(名)詞 — — 因此就用「決策不只是選擇」這一觀點與心得,拿來作為我們兩人討論AI這一議題的破題話頭。
我說:東西方大學不論是哪個學院,對於決策都把它簡化為選擇(choice),但這種定義下的決策都只是從已知(已經給定,given)的選項(choice set)中去做抉擇,而忽略了更高層次的思考。例如,你如何確認這組給定的選項就是最值得的候選選項,你該不該去思考「是否還有其他更佳選擇組合(choice set)的可能性」的問題?

聽了我的質疑,安德森就在紙上畫了一條起起伏伏的曲線,並說過去要找這條曲線上的最佳解(optimal solution,不論是最低或最高點),都是從某一個特定的點去前後搜尋,檢視曲線斜率是往上或往下的方式去找答案 — — 按:決策學大師賽蒙(Herbert Simon,自取的中文名字為司馬賀)針對上述事實與限制,就提出「決策所做的選擇只是在找相對的「滿意解(satisficed solution)」,而不是最佳解」的說法;因為沒有人有足夠的時間與資源去探索整條曲線的最低點或最高點的所在位置,而只能在可能或可行範圍內找出一個local的最佳解,又因為他永遠不知道那是不是global最佳解,所以在這種情形下。

理論上,決策者充其量只能聲稱這時找到的local最佳解為「滿意解」 — — 但現在,安德森說電腦是一次就從整條曲線上所有的點同時下手,去判定它們的屬性,然後讓這些被判定出來的屬性直接互相溝通,這樣就可讓符合「最佳解」標準的答案自然湧現(emerging);於是這時所選出來的點,就不再是local最佳,而可確定它就是這條曲線的global最佳了。

安德森用相當於大數據的概念,似乎是針對當年司馬賀所提出「滿意解」概念背後的困境(無法判定是否為global最佳的問題),提出了解答。但我則指出「你畫的這條曲線,在我來看只代表一種特定的可能性空間(a specific given solution space)而已,這個solution space中的global optimum可能也只是更大solution space中的local optimum。我解釋說:這不是理論上的強辯,而是實務上的經驗。因為在現實世界的決策情境中,幕僚提的甲乙丙案,很可能被決策主管「退回重擬」 — — 被要求去擴大solution space以發掘出更好的選項;甚至被要求從完全不同的思考角度去探索新的solution space,然後再從中尋找值得考慮的選項。

決策不只是針對已知Solution Space選擇最佳解
我說一旦進入上述的決策情境時,決策就已經不再是「單純地針對既有選擇空間內的選項去作抉擇」了,而是升高了一個層次,進入到「先擴大或改變選擇空間」然後再進行選擇的「先謀後斷(design first then choice)」層次。從information processing的觀點看,進入屬於alternative design的「謀」,與過去只在某種choice criteria之下,針對已知的solution space來找出 ”optimal” solution的機制與思維完全不同。

因為實務上「先謀後斷」的決策問題型態確實存在,所以AI對於這種升高一個層次問題是否已經具備處理能力,就會變成一個值得探討的問題。安德森基本同意目前的AI在這方面還有很大努力空間,也同意我所提這一議題的適當性legitimacy。

先謀後斷之外的決策議題

我接著提出,在我的決策研究中,除了「先謀後斷」外,決策還有更高層次的入手點必須考慮,那就是管理上常提醒人們的「做對的事重於把事做對」的問題。

因為「先謀後斷」只是在「已知的問題定義(given problem definition)下尋找答案」,仍然無法避免 ”find a right solution for a wrong problem”的窘境;所以決策者對於重大決策再「先謀後斷」之前,還須先檢視「問題定義」是否妥適的問題。我還接著簡介我所提出的決策「見識謀斷(intelligent, conception, design, choice)」四部曲的架構。

而針對其中「識(定義問題,conception),我特別提出自己處理「蘇花改」案的經驗作為「無解的問題有時可通過問題的重新定義找到解決的對策」的案例 — — 蘇花公路的改善,在「發展派」與「保育派」20餘年對抗的僵局下,使蘇花高速公路計畫完全無法推動,並且也使蘇花公路山區路段的交通安全問題無從解決。後來交通部把問題重新定義為「改善蘇花公路山區路段的安全性」以達成「給花東民眾一條安全回家的路」作為目標,亦即,把原本「發展 vs 保育」「要做 vs 不做」的政策「原則」之爭,轉化為「維護社會公平與安全 vs 環境保育」的「如何做」的工程「技術」問題;使僵持不下的政策困局,因而取得雙方共識,使不安全的蘇花山區公路改善工程終於得以順利推動,並逐段完工通車中。

安德森同意用這個案例來說明「決策在謀斷之上,還存在定義問題(conception)更高層次的問題」具有說服力;甚至佩服我們當年在可想像的困難情形下,能想到用這種方法來解決政治難題。

對於AI的其他三點觀察

我順著以上的話題,提出了以下三點觀察與看法。

(一)從AI技術發展的角度,我強調因為對人類決策來說,不論是謀或識(design or conception)都涉及如何thinking outside the box發揮創意的問題;所以如何針對人類所具有以不同方式來定義問題的創意、創新能力,來探索AI研究的方向,是值得進一步思考的問題。

(二)從上述討論中,我們也發現任何決策必須按照決策情境,先做出「決策的決策」問題;亦即:決策者進行實際決策時,必須先在「見識謀斷」四個不同層次間,做出究竟該從哪個層次入手做決策的問題 — — 這一決策可稱為super-ordinate decision或meta-decision;這一「決策的決策」如果誤判,後續做出的決策就不可能妥切。AI系統「是否」或「如何」具備這種能力,應該是一個未來的努力空間。

(三)另一更嚴肅的問題是:「見識謀斷」的每一層次其實都由「事實前提、價值前提」兩類資訊所構成。

而其中的「價值前提」問題,投射回AI領域,就成為「如何讓AI系統具有價值判斷或價值抉擇能力?」甚至是「如果AI系統通過深度學習自發演化出價值觀,並從而做出自己的價值取捨,那麼到時我們該如何面對這種決策的後果?」。這些都是在AI後續發展過程中,我們必須未雨綢繆,事先想清楚對策的問題。

安德森同意以上三個觀點反映的都是重要問題,並也都屬於AI未來的研究議題與可能發展空間。

系統論的典範危機

在與安德森對談過程中,我也提到今天不論東西方大學的哪一種學院,所教授的系統論(system theory)都還是牛頓機械典範(Newtonian mechanical paradigm),完全無法處理具生命力系統的演化(evolution)問題;而未來AI將普遍具有「深度學習」能力,並逐步進入「準生命演化」的境界,牛頓典範的系統論早已不合時宜、不敷應用;因此我們今天亟需一套新的系統論典範,來面對這種新的需求。對此科研界需要新系統論的說法,安德森表示同意,並說這是很重要的基本問題。

我進一步跟他說,我根據複雜系統(complex system)的科研成果已經整理出一套,以自組織概念為核心,可用以解釋生命系統的創生、存在、演化等生命現象的系統理論,並已寫入我最近出版的《管理》書中。他對此深感訝異與高度興趣。不過,我跟他說目前該書雖然還只有中文版,但只要有興趣,不妨礙我們保持聯絡、繼續討論。

最後,我們談到前一天Phil Libin(前Evernote執行長)所提出AI系統的設計必須遵守的三個原則:Honesty、Decision Revocability、Not applied to Zero-sum game。安德森同意這些原則很重要,但如何落實是更根本的問題。我認為Libin提出的這些原則是未來AI技術發展與應用上必須秉持的人本思維精神與深度反省的態度;至於應以何種方式將它們落實,則是大家必須共同思考的問題。

本文由毛治國授權轉載自其Medium

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

關鍵字: #人工智慧
往下滑看下一篇文章
從地下室到演唱會都不卡!台灣大哥大如何解鎖全場景、有感升級的5G體驗?
從地下室到演唱會都不卡!台灣大哥大如何解鎖全場景、有感升級的5G體驗?

5G開台邁入第五年,戰場早已從「誰有5G」轉向「誰的5G好用」。夜市、演唱會、地鐵、商圈——這些人潮洶湧、訊號最容易卡頓的地方,才是檢驗網路品質的真實考場。要打造真正有感的5G體驗,靠的不是技術名詞,關鍵在於能否把網路資源變成看得見、用得到的流暢速度。

台灣大哥大擁有最大5G黃金頻寬,以及高覆蓋率的NRCA載波聚合領先技術,為網路傳輸佈局暢行無阻的地圖,打通每一個收訊死角,再加上OpenSignal權威認證背書,不僅是技術成績站得住腳,更讓用戶日常生活使用有感提升。

全台獨家最大頻寬100MHz,讓5G跑得快又穩

要解析5G效能優劣,關鍵在於「頻寬」配置。頻寬就像道路的寬度,直接決定數據傳輸的承載容量。頻寬越寬,越能支撐大量用戶同時連線,確保下載、串流、直播等應用維持順暢體驗,避免因流量壅塞導致服務中斷。簡言之,頻寬就是撐起網路用戶體感的關鍵。

台灣大哥大目前在全球主流5G黃金頻段3.5GHz上,獨家取得全台最大100MHz頻寬資源,達到頻譜配置的頂規水準。實測結果顯示,在理想條件下,此頻寬配置可擁有高達2Gbps下載速率。

1216001092_53M.jpg
圖/ shutterstock

同時,台灣大哥大也已在全台超過2,000處熱點完成5G黃金頻段基地台升級。因此即使遇到夜市商圈、大型演唱會、跨年活動等高密度人流聚集場景,當用戶數量暴增、頻寬需求激增時,完整的基礎建設布局仍能確保訊號不中斷、網速不卡頓。

打通收訊死角,體驗有感不只是口號

除了速度與流量,5G還有一項棘手難題——涵蓋死角與訊號穿透力。特別是在室內深處、地下室等場域,即使該處已有5G涵蓋,實際使用仍有可能無法完全避免的卡頓或不穩狀況。

原因在於5G高頻段雖速度快,但穿透力弱,容易因手機功率有限而發生不穩定的情況。對此,台灣大哥大結合700MHz低頻段的穩定性優勢,以互補式的高低頻協作架構,強化訊號深度與廣度。換言之,在戶外大場景跑得快,在室內密閉空間也能收得到。

NRCA自動切換最佳頻段,上網不怕訊號塞車

台灣大哥大的核心技術優勢,還有NRCA(New Radio Carrier Aggregation)載波聚合技術;NRCA讓行動裝置能同時使用多個頻段上網,如同多車道高速公路,讓資料流在不同頻段間靈活切換,兼顧高速率與深度覆蓋率。當某一頻段出現壅塞,系統能自動將資料流量轉至其他頻段傳輸,以提升整體承載效率與傳輸穩定性。

自2021年率先佈建高低頻NRCA,目前已有超過六成基地台支援這項技術,有效壓縮延遲、提升連線穩定度、強化訊號覆蓋與穿透。此外,合併台灣之星後,台灣大哥大更將全球主流5G黃金頻段3.5GHz的60MHz與40MHz頻寬合併,打造業界最大100MHz,為全台唯一同時整合5G高高頻與高低頻NRCA的電信業者,在5G網路體驗與穩定度領先同業,達到頻譜配置的頂規水準。

隨著短影音、直播、雲端工作等即時傳輸需求爆炸成長,用戶對「穩定滑順」的網路依賴不斷提高。台灣大哥大領先的NRCA載波聚合技術,正好回應用戶需求,無論是在捷運上滑臉書,還是在人聲鼎沸的夜市直播吃美食,都能享受多場景流暢切換的優質5G體驗。

2334636029_63M (1).jpg
圖/ shutterstock

優質有感體驗,經國際權威OpenSignal認證

根據國際第三方認證機構OpenSignal於2025年6月公布的行動網路體驗報告,台灣大哥大在「可用率」、「5G影音體驗」與「整體影音體驗」三項用戶有感的指標上獲得第一名。所謂可用率,意指用戶隨時隨地都能連上網路,關鍵時刻訊號不缺席,不論身處室內或移動場景,都能穩定連線不中斷;同時,良好的影音體驗指標,則代表用戶在觀看影片、雲端會議或滑短影音時,能享有畫質流暢、連線穩定、不易中斷的完整體驗。OpenSignal向來以實測數據為依據,其認證結果可視為對 5G 體驗品質的權威背書。

今年第一季,OpenSignal也針對合併電信後的網路表現進行評比。自2023年底台灣大哥大與台灣之星完成合併後,其在涵蓋體驗的評分顯著提升,並在品質一致性指標上維持82~84%的穩定水準。相較其他合併案例,台灣大哥大是體驗提升幅度最大、整體穩定性維持最佳的合併業者,顯見其網路品質、營運韌性與整合效率。

5G技術是否能成為使用者真正信賴的基礎,關鍵在於能否在生活場景中「被感受到」。台灣大哥大以完整的頻寬資源、彈性技術架構與佈建策略,從速度到穩定、從戶外到室內,打造順暢5G體驗,可期待在這場長期5G競賽中,成為用戶最仰賴的行動網路選擇。

有關更多相關資訊,請查詢網站:https://www.taiwanmobile.com/content/event/nrca/index.html

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
電商終局戰
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓