與「長尾理論」作者Chris Anderson午餐談話筆記
與「長尾理論」作者Chris Anderson午餐談話筆記

編按:7月19日與20日連續兩天,參加「2018 Digital Innovation Forum數位創新論壇」,有機會與「長尾理論」作者克瑞斯・安德森(Chris Anderson)在午餐時間交換彼此對AI等問題的看法,覺得很有意思,所以把它做成紀錄與大家分享。

「2018 Digital Innovation Forum數位創新論壇」是ABAC(APEC企業諮詢委員會(APEC Business Advisory Council))的台北分會與今年11月的APE年度會議主辦國巴布亞新幾內亞的分會,所共同出面辦理的研討會;會中請到了許多網路技術與數位經濟的成功創業家與思想家,分享他(她)們的經驗與看法,非常精彩,從中卻可學到很多新觀念。第二天一早,AppWorks創辦合夥人,也是TiEA理事長的林之晨(Jamie Lin),把台灣比喻為“Wakanda of Asia”,用一些簡單具說服力的數字,相信可讓國際友人對台灣在網路與數位經濟發展上的實力印象深刻。連續兩天的會議,到了第二天聽眾仍然幾乎滿座,就可視為會議成功的指標。

對我個人來說,最有意思的是第二天午餐席上,與「長尾理論」作者安德森(Chris Anderson)相鄰而坐,暢談了一個多小時與AI相關的彼此看法。由於發現安德森似乎對於我的觀點很感興趣並還一路作了筆記,因此覺得或許值得把我們談話內容記錄下來與大家分享。

我們的談話從我請教他「量子計算的空前計算能量,人類將來要如何使用它」的問題開始。他回說「這個問題目前確實還沒有答案;過去的歷史一再證明,科技人員都是把技術可能性變成可行性後,往往不知道也無法處理如何應用的問題,因此剩下的問題就交給創業家去發揮想像力了。」不過,他認為量子計算怎麼說都還比較單純,AI的問題反倒比較嚴肅。於是我們的話題就切換到AI。

我對AI的過去印象

我對AI的接觸,始自30餘年前在美國寫博士論文期間,因回顧研究文獻的關係,曾經淺嚐即止的經驗。那時AI的名詞剛被提出,它的主要內容還是從麻省理工學院維納(Robert Wiener)教授控傳學(cybernetics)或「電腦如何仿真」的觀點下手,基本上是屬於「rule-based」的一套概念。

不過,因為當時電腦的計算能力、儲存容量等客觀條件的限制,在實作上難以獲得重大進展,所以熱潮很快就消退了。一直到最近幾年,因為資通訊能量與容量,以及相關的設置與操作成本早已不可同日而語;而雲端、大數據、IOT、神經網路科學(甚至量子計算科學概念)的快速發展,累積了完全超乎當年想像的成果,所以人們終又重新找回AI這個概念,來取代前不久還常使用的機器人學(robotics)的說法,用來代表最新運算與儲存科技綜合運用的名詞。


在這次研討會中,也有人提醒AI這兩個字,不應翻成Artificial Intelligence,而應翻成Augmented Intelligence;後者的翻法,我認為比較有「人本」思維,值得大家反思。

與安德森AI話題的切入 — — Local vs. Global Optimum

AI可從許多不同的角度切入來討論。由於我自己長期探索的學術問題之一是決策 — — decision(名詞)與decision-making動(名)詞 — — 因此就用「決策不只是選擇」這一觀點與心得,拿來作為我們兩人討論AI這一議題的破題話頭。
我說:東西方大學不論是哪個學院,對於決策都把它簡化為選擇(choice),但這種定義下的決策都只是從已知(已經給定,given)的選項(choice set)中去做抉擇,而忽略了更高層次的思考。例如,你如何確認這組給定的選項就是最值得的候選選項,你該不該去思考「是否還有其他更佳選擇組合(choice set)的可能性」的問題?

聽了我的質疑,安德森就在紙上畫了一條起起伏伏的曲線,並說過去要找這條曲線上的最佳解(optimal solution,不論是最低或最高點),都是從某一個特定的點去前後搜尋,檢視曲線斜率是往上或往下的方式去找答案 — — 按:決策學大師賽蒙(Herbert Simon,自取的中文名字為司馬賀)針對上述事實與限制,就提出「決策所做的選擇只是在找相對的「滿意解(satisficed solution)」,而不是最佳解」的說法;因為沒有人有足夠的時間與資源去探索整條曲線的最低點或最高點的所在位置,而只能在可能或可行範圍內找出一個local的最佳解,又因為他永遠不知道那是不是global最佳解,所以在這種情形下。

理論上,決策者充其量只能聲稱這時找到的local最佳解為「滿意解」 — — 但現在,安德森說電腦是一次就從整條曲線上所有的點同時下手,去判定它們的屬性,然後讓這些被判定出來的屬性直接互相溝通,這樣就可讓符合「最佳解」標準的答案自然湧現(emerging);於是這時所選出來的點,就不再是local最佳,而可確定它就是這條曲線的global最佳了。

安德森用相當於大數據的概念,似乎是針對當年司馬賀所提出「滿意解」概念背後的困境(無法判定是否為global最佳的問題),提出了解答。但我則指出「你畫的這條曲線,在我來看只代表一種特定的可能性空間(a specific given solution space)而已,這個solution space中的global optimum可能也只是更大solution space中的local optimum。我解釋說:這不是理論上的強辯,而是實務上的經驗。因為在現實世界的決策情境中,幕僚提的甲乙丙案,很可能被決策主管「退回重擬」 — — 被要求去擴大solution space以發掘出更好的選項;甚至被要求從完全不同的思考角度去探索新的solution space,然後再從中尋找值得考慮的選項。

決策不只是針對已知Solution Space選擇最佳解
我說一旦進入上述的決策情境時,決策就已經不再是「單純地針對既有選擇空間內的選項去作抉擇」了,而是升高了一個層次,進入到「先擴大或改變選擇空間」然後再進行選擇的「先謀後斷(design first then choice)」層次。從information processing的觀點看,進入屬於alternative design的「謀」,與過去只在某種choice criteria之下,針對已知的solution space來找出 ”optimal” solution的機制與思維完全不同。

因為實務上「先謀後斷」的決策問題型態確實存在,所以AI對於這種升高一個層次問題是否已經具備處理能力,就會變成一個值得探討的問題。安德森基本同意目前的AI在這方面還有很大努力空間,也同意我所提這一議題的適當性legitimacy。

先謀後斷之外的決策議題

我接著提出,在我的決策研究中,除了「先謀後斷」外,決策還有更高層次的入手點必須考慮,那就是管理上常提醒人們的「做對的事重於把事做對」的問題。

因為「先謀後斷」只是在「已知的問題定義(given problem definition)下尋找答案」,仍然無法避免 ”find a right solution for a wrong problem”的窘境;所以決策者對於重大決策再「先謀後斷」之前,還須先檢視「問題定義」是否妥適的問題。我還接著簡介我所提出的決策「見識謀斷(intelligent, conception, design, choice)」四部曲的架構。

而針對其中「識(定義問題,conception),我特別提出自己處理「蘇花改」案的經驗作為「無解的問題有時可通過問題的重新定義找到解決的對策」的案例 — — 蘇花公路的改善,在「發展派」與「保育派」20餘年對抗的僵局下,使蘇花高速公路計畫完全無法推動,並且也使蘇花公路山區路段的交通安全問題無從解決。後來交通部把問題重新定義為「改善蘇花公路山區路段的安全性」以達成「給花東民眾一條安全回家的路」作為目標,亦即,把原本「發展 vs 保育」「要做 vs 不做」的政策「原則」之爭,轉化為「維護社會公平與安全 vs 環境保育」的「如何做」的工程「技術」問題;使僵持不下的政策困局,因而取得雙方共識,使不安全的蘇花山區公路改善工程終於得以順利推動,並逐段完工通車中。

安德森同意用這個案例來說明「決策在謀斷之上,還存在定義問題(conception)更高層次的問題」具有說服力;甚至佩服我們當年在可想像的困難情形下,能想到用這種方法來解決政治難題。

對於AI的其他三點觀察

我順著以上的話題,提出了以下三點觀察與看法。

(一)從AI技術發展的角度,我強調因為對人類決策來說,不論是謀或識(design or conception)都涉及如何thinking outside the box發揮創意的問題;所以如何針對人類所具有以不同方式來定義問題的創意、創新能力,來探索AI研究的方向,是值得進一步思考的問題。

(二)從上述討論中,我們也發現任何決策必須按照決策情境,先做出「決策的決策」問題;亦即:決策者進行實際決策時,必須先在「見識謀斷」四個不同層次間,做出究竟該從哪個層次入手做決策的問題 — — 這一決策可稱為super-ordinate decision或meta-decision;這一「決策的決策」如果誤判,後續做出的決策就不可能妥切。AI系統「是否」或「如何」具備這種能力,應該是一個未來的努力空間。

(三)另一更嚴肅的問題是:「見識謀斷」的每一層次其實都由「事實前提、價值前提」兩類資訊所構成。

而其中的「價值前提」問題,投射回AI領域,就成為「如何讓AI系統具有價值判斷或價值抉擇能力?」甚至是「如果AI系統通過深度學習自發演化出價值觀,並從而做出自己的價值取捨,那麼到時我們該如何面對這種決策的後果?」。這些都是在AI後續發展過程中,我們必須未雨綢繆,事先想清楚對策的問題。

安德森同意以上三個觀點反映的都是重要問題,並也都屬於AI未來的研究議題與可能發展空間。

系統論的典範危機

在與安德森對談過程中,我也提到今天不論東西方大學的哪一種學院,所教授的系統論(system theory)都還是牛頓機械典範(Newtonian mechanical paradigm),完全無法處理具生命力系統的演化(evolution)問題;而未來AI將普遍具有「深度學習」能力,並逐步進入「準生命演化」的境界,牛頓典範的系統論早已不合時宜、不敷應用;因此我們今天亟需一套新的系統論典範,來面對這種新的需求。對此科研界需要新系統論的說法,安德森表示同意,並說這是很重要的基本問題。

我進一步跟他說,我根據複雜系統(complex system)的科研成果已經整理出一套,以自組織概念為核心,可用以解釋生命系統的創生、存在、演化等生命現象的系統理論,並已寫入我最近出版的《管理》書中。他對此深感訝異與高度興趣。不過,我跟他說目前該書雖然還只有中文版,但只要有興趣,不妨礙我們保持聯絡、繼續討論。

最後,我們談到前一天Phil Libin(前Evernote執行長)所提出AI系統的設計必須遵守的三個原則:Honesty、Decision Revocability、Not applied to Zero-sum game。安德森同意這些原則很重要,但如何落實是更根本的問題。我認為Libin提出的這些原則是未來AI技術發展與應用上必須秉持的人本思維精神與深度反省的態度;至於應以何種方式將它們落實,則是大家必須共同思考的問題。

本文由毛治國授權轉載自其Medium

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

關鍵字: #人工智慧
往下滑看下一篇文章
突破傳統信用卡模式!國泰世華如何重塑刷卡體驗,養出百萬CUBE切換忠實粉?
突破傳統信用卡模式!國泰世華如何重塑刷卡體驗,養出百萬CUBE切換忠實粉?

根據聯合徵信中心統計,國人平均每人持有約4張信用卡,雖反映出信用卡普及,卻也暴露市場飽和的現實。當回饋比例、聯名優惠成為銀行發卡標配,差異化日漸縮小,消費者對單一卡片的忠誠度也難逃下滑。

面對同質化競爭困境,國泰世華銀行四年前即推出CUBE信用卡,首創「數位自選」權益機制,讓使用者能依需求自由切換權益回饋,成功累積百萬卡友。然而,當使用者習慣隨手調整回饋後,國泰世華又該如何進一步突破,讓廣大「CUBE切換忠實粉」更黏?

數位平台成熟度,撐起「權益自選」創新機制

「以前一張信用卡就是固定型態的權益,或綁定單一聯名夥伴。而權益自選的設計,讓信用卡不再那麼制式、更加靈活!」

國泰世華銀行數位長陳冠學指出,CUBE 卡最大的突破,是將信用卡從「靜態工具」轉化為「動態平台」。搭配CUBE App卡友可依需求隨時切換:餐廳用餐或假日逛百貨公司選「樂饗購」、出國旅遊則切換至「趣旅行」享旅遊或交通優惠;一張卡橫跨多種生活場景,甚至能依個人偏好即時調整,客戶更能於商家請款後透過CUBE App查詢點數回饋明細,對精打細算的卡友格外具有吸引力。

然而,要實現如此彈性靈活上下架權益與優惠,背後的挑戰遠比表面複雜。陳冠學直言:「若沒有成熟的數位平台作為基礎,根本不可能實現。」傳統信用卡只需處理單卡簽帳與消費紀錄,但 CUBE 必須同時滿足龐大客群的多元需求,從數據分析到營運模式都得全面升級。唯有在技術架構上徹底重建,才能實現這種前所未有的產品邏輯。

因此,CUBE 信用卡並不只是單一產品的創新,也可以說是推動國泰世華數位平台進化的重要里程碑。

國泰世華銀行數位長陳冠學
國泰世華銀行數位長陳冠學指出,唯有成熟的數位平台,才能撐起CUBE信用卡「權益自選」的創新機制。
圖/ 數位時代

因為靈活,得以開啟平台化服務的想像

打開 CUBE App、彈性切換CUBE信用卡權益方案,甚至查看領取不同商家的回饋加碼優惠券,這種互動式體驗已成為百萬卡友的日常。但國泰世華並未止步於此,而是思考如何進一步延伸金融場景。

「許多權益的設計並不只是為了增加交易,而是基於人性化洞察,去滿足客戶更深層的需求。」陳冠學舉例,如CUBE信用卡「童樂匯」權益,針對親子族群推出涵蓋餐廳、嬰幼童品牌、五感體驗課程等六大通路的專屬權益,最高可享 10% 小樹點回饋,甚至指定私校學費也提供領券最高 3% 回饋。雖然少子化趨勢讓親子族群相對小眾,但陳冠學則有不同觀點:「服務客戶的下一代,也是長遠經營的投資。」

除了分眾經營,對於聯名卡的發行,陳冠學則認為:「過去,聯名卡是會員身份的象徵,但在數位時代,攜帶多張會員卡的需求已經弱化。我們透過不同合作模式,仍能達到同樣的客群經營效果。」

於是,國泰世華與多元場景通路如 Uber、Klook、大樹藥局、臺虎展開不同形式的深度合作。對合作通路而言具備「品牌強強聯手」的導客效應,對國泰世華來說,則更能觸及多元分眾市場,跳脫單一品牌聯名的侷限,信用卡也因此從支付工具延伸出更多服務優勢。

當信用卡升級為集結服務的平台,國泰世華不僅打造互利共生的生態圈,對外創造多贏合作,對客戶也深化品牌連結,逐步鞏固難以取代的黏著度。

新聞照.jpg
CUBE信用卡結合App數位自選權益,讓用戶依需求即時調整回饋,展現靈活又直覺的數位金融體驗。
圖/ 國泰世華

從一張卡到點數生態圈,國泰世華打造CUBE尊榮會員感

「跳脫信用卡本位主義,不再侷限於刷卡回饋,而是從整體金融與生活情境出發,將服務轉化為跨情境串聯的完整旅程。」陳冠學強調,CUBE 品牌的使命,就是做到跨情境、跨服務、跨子公司的一站式體驗。

而國泰優惠 CUBE Rewards App 的出現即是里程碑。從原先 MyRewards 升級為 CUBE Rewards App,不只功能升級,也是品牌再造,把 CUBE 信用卡與國泰集團「小樹點」完整串連,將會員經營、點數生態圈與 CUBE 品牌價值一站打通。

「我們讓 CUBE 不只是信用卡,更像是俱樂部般的尊榮體驗。」憑藉國泰龐大的小樹點基礎與優質卡友群,CUBE 對合作品牌展現強大吸引力,得以不斷拓展餐飲、旅遊到藝文等場景,更突破點數僅能折抵帳單的模式,讓卡友能用點數兌換熱門演唱會、運動賽事門票,甚至搶先預訂話題熱門餐廳等限量體驗。

「我們希望讓客戶覺得:哇,你又找到我的需求了!」陳冠學說。把細微偏好化為具體體驗,正是 CUBE 平台能不斷創造驚喜的關鍵。四年來,CUBE 以「1+N」權益架構結合雙 App,已累積超過 600 萬卡,為國內發卡量最大的單一信用卡;累計2025 年前 7 月,簽帳金額達 4,889 億元,年增 11%,寫下亮眼成績。

但對國泰世華而言,數字只是過程,真正的目標應如陳冠學所言:「信用卡不該再有框架,CUBE 要做的,就是以洞察與創造,帶給客戶超乎想像的個人化體驗。」

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓