Android裝置滿街跑,為何Google Play吸金力不如App Store?
Android裝置滿街跑,為何Google Play吸金力不如App Store?
2018.10.12 | 蘋果

相信你已有所耳聞,同樣是每天都得用的手機App,蘋果App Store的營收卻總是一次次超越Android的Google Play,但現在這個差距卻又拉出新高。

在2018年第3季,兩大應用程式商店收入總額達182億美元,但App Store營收卻比Google Play高出93.5%,將近一倍,市調機構Sensor Tower指出,這是自2014年以來,兩大平台差距最大的一季。

明明搭載Android系統的活躍裝置數全球達23億台、市占率超過75%,有著「以量制勝」的絕對優勢,但狀況卻為何一直無法逆轉?

明明Google Play App下載數超高,為何卻賺不了錢?

根據Sensor Tower統計指出,在2018年第3季,App Store收入所得約120億美元,而Google Play則為62億美元,相差了快一倍;但若觀察另一項數據,App的安裝下載次數情形卻完全顛倒:App Store下載數為76億次,Google Play卻整整高出2.5倍,高達195億次。

究竟是為什麼,下載次數相當高的Google Play,卻無法將此轉換成正向的營收,和App Store反而越差越遠?探究其原因,首要關鍵在於iOS和Android用戶,購買力及消費習慣的差距。

google play
Google Play營收不及App Store,已成為常態。
圖/ shutterstock

市調機構Loup Ventures指出,2018年新iPhone的售價高於預期, 總體平均售價已達745美元,反觀Andriod陣營,IDC則預估今年Android手機的平均售價將達262美元,相當於買一支iPhone就可以買3支Android手機,更別說Android手機銷量主力在於中低機款,很大一部分是財力沒那麼雄厚的東南亞市場。綜觀用戶的消費力來看,自然iOS用戶高出許多,更願意在App上花錢意願更強。

第二點,在於App運營的難易度影響App品質。

搭載iOS系統的設備只有iPhone和iPad,系統和機型種類都不多,開發者在開發時需要顧及的尺寸較少,也沒有特別規格要注意,對於App的優化和管理相對容易;而若是Android系統,則要面對五花八門的品牌、成千上萬的規格來設計運營,相對複雜很多,這讓App Store中品質高的「大作」相對更多,而越優質的App消費者當然願意花錢購買。

至於最後一點,則是系統的開放程度,讓Android盜版較為猖獗。

iOS比Android封閉很多,這讓App開發限制更多、審核更久,等待上架的時間,往往會比Android多上至少2週,但也此讓iOS的盜版App相對更少。儘管一款付費App現在普遍售價約60元,但市面上針對Andriod仍有不少破解或是複製的免費山寨版,這讓Google Play上不少應有的收入跟著流失。

Netflix幫忙賺最多,App Store想讓開發者走向訂閱制

而在Sensor Tower的報告上,有另一點值得注意,兩大平台靠著哪一款App賺進最多錢?若以非遊戲類別來講,答案是Netflix,為它們賺了2.437億美元。當以採取「訂閱付費制度」的Netflix成為當紅炸子雞,同樣是提供內容的應用程式平台,現在也紛紛效仿起此商業模式,蘋果似乎也正在鼓勵開發者往此模式轉型。

App Store 介面全面更新
蘋果現在鼓勵開發者,讓App從一次性買斷往訂閱制轉型。
圖/ Apple WWDC 2017 直播

根據Business Insider指出,去年蘋果就鼓勵開發者在App Store上的收費模式,從一次性買斷轉向長期訂閱制,也用規範制度的優惠來吸引開發者,若是採用訂閱付費的App,蘋果在第一年收取開發者所獲收入的30%,而第二年就調降為15%。總體來說,還是為開發者、也為蘋果自己帶來的更穩定的長期營收,也讓開發者更注意App的長期維護。

但對於消費者而言,針對單價不高的App,單次購買總比訂閱付費來得便宜。究竟訂閱付費會不會成為App,或是內容服務的下一個主流?還需要時間驗證。

往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓