30年深度學習的孤獨之旅!今年圖靈獎頒給了「AI三巨頭」
30年深度學習的孤獨之旅!今年圖靈獎頒給了「AI三巨頭」

有一個流傳很廣的說法:Steve Jobs把公司取名蘋果,並以咬了一口的蘋果作為logo,是為了紀念服食毒蘋果自殺的電腦科學先驅艾倫·圖靈(Alan Mathison Turing)。

Steve Jobs否認了這個說法,但他說,「很希望自己是那樣構思的。」

從電腦科學到人工智慧,圖靈都做出了奠基性的貢獻,以他的名字命名的「圖靈獎」,被公認為電腦世界的最高榮譽,相當於電腦界的諾貝爾獎。

今年的圖靈獎被授予了深度學習領域的三巨頭:Yoshua Bengio、Yann LeCun和Geoffrey Hinton,以表揚他們對人工智慧發展的推動,三位科學家將平分100萬美元的獎金。

現在,深度學習已經幾乎是人工智慧的代名詞,從AlphaGo、人臉辨識、智慧語音助理到自動駕駛,都得益於深度學習的發展。

但它的進步,是一個孤獨的故事。

過去10年內,ImageNet圖像辨識挑戰賽都是人工智慧領域最權威的比賽之一。

ImageNet有一個超百萬張圖片的超級數據庫,其中的圖片由人手工添加標籤,說明圖片的內容,並分成不同的類別,從動物、汽車等大類,一直到虎鯊、廁所衛生紙這樣的小類。

參賽者要做的就是對圖片中的物體進行辨識和分類,準確度最高者獲勝。

圖靈獎
圖/ 作者提供

2012年,首次參賽的加拿大電腦科學家Geoffrey Hinton領銜的團隊拿到了冠軍,而且,比第二名准確率高出了10%。

這個結果震驚了學術界,因為當時的第二名到第四名都用了相同的研究方法,他們已經做到了極致,每個隊伍準確率的差別不超過1%。

Hinton團隊用的是完全不同的方法——深度學習,具體的算法被稱為卷積神經網路(CNN)。這是一個里程碑式的進步,正是Hinton團隊的突破,讓學術界和工業界用更多人關注、使用深度學習,最終推動了人工智慧行業的大發展。

如果以辨識貓為例,傳統的電腦視覺算法依靠設計者的先驗知識,比如透過貓的集合體推斷出,四條腿,體型較小,會喵喵叫的動物為貓。機器透過人的思維構建的模式來判斷它是否為貓。

深度學習則不同,它從海量的和貓相關的數據中自動學習,並提取出相應特徵,最終可以判定某個未知物體為貓。它和人類的思維方式更為接近,這種算法也被歸於神經網路。

雖然看起來深度學習從根本上就是一個更先進的算法,但在過去相當長的時期內,它並不被看好。

因為過去用於訓練的數據集規模都比較小,這很容易導致過擬合現象,即算法在測試集表現很好,但在實際應用出會出現極大的誤差;同時,電腦性能也無法滿足擁有成千上萬個參數的深度學習模型。

Yoshua Bengio、Yann LeCun和Geoffrey Hinton三位科學家正是在這樣的限制下堅持深度學習研究的。

Hinton已經71歲了,上世紀70年代,還在愛丁堡大學攻讀人工智慧博士學位的他就著迷於神經網路,這和當時的學術主流背道而馳,就連他的博士生導師也反對他的研究。

「我們一周見一次面,有時會以爭吵結束,有時候不會。」Hinton在一次採訪中曾回憶他的博士時光。

Yoshua Bengio和Yann LeCun要年輕一些,三人的研究互有交集。Yann LeCun現年58歲,1987至1988年,他在Hinton的實驗室中有一年的博士後研究經歷,之後加入當時最頂尖的隸屬於AT&T的貝爾實驗室。

在貝爾實驗室中,LeCun利用深度學習研發出了辨識手寫的信件和電話號碼的系統,這個成功取得了不錯的商業成功,它一度辨識了美國10%的手寫支票。

但是,當他將深度學習用於其他領域時,就遇到了重重困難,只有當訓練數據集足夠大時,深度學習才能表現得足夠好,但當時很少有什麼領域滿足這個條件。

LeCun的研究被視為異類,但依然有一些研究員和他一樣堅信深度學習的未來,包括現年55歲的,當時同在貝爾實驗室的Yoshua Bengio。

2004年,在加拿大前沿科學機構的讚助下,Geoffrey Hinton創立了專注於「神經計算和自適應感知」的項目,他也邀請了在深度學習堅持多年的Yoshua Bengio和Yann LeCun加入。

三人聯手後,就是推動深度學習不斷前進的故事。他們在2010年幫助微軟、IBM和Google拓展了語音辨識的邊界,之後在圖像辨識做了相同的工作,一直到2012年,Hinton領銜的團隊在ImageNet圖像辨識挑戰賽一戰成名,掀開了人工智慧的嶄新一頁。

現在,Hinton加入了Google,同時在多倫多大學繼續研究工作;LeCun是Facebook的首席人工智慧科學家,同時也是紐約大學的教授;Bengio拒絕了科技巨頭的邀請,他是蒙特利爾大學的教授,並創立了一家名為ElementAI的AI公司。

如果算上Hinton在博士期間的研究,他們已經默默為深度學習奉獻了30年。

「他們引領了科學典範的轉變,歷史最終選擇了他們,我充滿敬畏。」另一位AI權威,艾倫人工智慧研究所CEO,Oren Etzioni如此評價他們的獲獎。

圖靈獎沒有忘記英雄,我們也應該銘記。

本文授權轉載自愛范兒

往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓