30年深度學習的孤獨之旅!今年圖靈獎頒給了「AI三巨頭」
30年深度學習的孤獨之旅!今年圖靈獎頒給了「AI三巨頭」

有一個流傳很廣的說法:Steve Jobs把公司取名蘋果,並以咬了一口的蘋果作為logo,是為了紀念服食毒蘋果自殺的電腦科學先驅艾倫·圖靈(Alan Mathison Turing)。

Steve Jobs否認了這個說法,但他說,「很希望自己是那樣構思的。」

從電腦科學到人工智慧,圖靈都做出了奠基性的貢獻,以他的名字命名的「圖靈獎」,被公認為電腦世界的最高榮譽,相當於電腦界的諾貝爾獎。

今年的圖靈獎被授予了深度學習領域的三巨頭:Yoshua Bengio、Yann LeCun和Geoffrey Hinton,以表揚他們對人工智慧發展的推動,三位科學家將平分100萬美元的獎金。

現在,深度學習已經幾乎是人工智慧的代名詞,從AlphaGo、人臉辨識、智慧語音助理到自動駕駛,都得益於深度學習的發展。

但它的進步,是一個孤獨的故事。

過去10年內,ImageNet圖像辨識挑戰賽都是人工智慧領域最權威的比賽之一。

ImageNet有一個超百萬張圖片的超級數據庫,其中的圖片由人手工添加標籤,說明圖片的內容,並分成不同的類別,從動物、汽車等大類,一直到虎鯊、廁所衛生紙這樣的小類。

參賽者要做的就是對圖片中的物體進行辨識和分類,準確度最高者獲勝。

圖靈獎
圖/ 作者提供

2012年,首次參賽的加拿大電腦科學家Geoffrey Hinton領銜的團隊拿到了冠軍,而且,比第二名准確率高出了10%。

這個結果震驚了學術界,因為當時的第二名到第四名都用了相同的研究方法,他們已經做到了極致,每個隊伍準確率的差別不超過1%。

Hinton團隊用的是完全不同的方法——深度學習,具體的算法被稱為卷積神經網路(CNN)。這是一個里程碑式的進步,正是Hinton團隊的突破,讓學術界和工業界用更多人關注、使用深度學習,最終推動了人工智慧行業的大發展。

如果以辨識貓為例,傳統的電腦視覺算法依靠設計者的先驗知識,比如透過貓的集合體推斷出,四條腿,體型較小,會喵喵叫的動物為貓。機器透過人的思維構建的模式來判斷它是否為貓。

深度學習則不同,它從海量的和貓相關的數據中自動學習,並提取出相應特徵,最終可以判定某個未知物體為貓。它和人類的思維方式更為接近,這種算法也被歸於神經網路。

雖然看起來深度學習從根本上就是一個更先進的算法,但在過去相當長的時期內,它並不被看好。

因為過去用於訓練的數據集規模都比較小,這很容易導致過擬合現象,即算法在測試集表現很好,但在實際應用出會出現極大的誤差;同時,電腦性能也無法滿足擁有成千上萬個參數的深度學習模型。

Yoshua Bengio、Yann LeCun和Geoffrey Hinton三位科學家正是在這樣的限制下堅持深度學習研究的。

Hinton已經71歲了,上世紀70年代,還在愛丁堡大學攻讀人工智慧博士學位的他就著迷於神經網路,這和當時的學術主流背道而馳,就連他的博士生導師也反對他的研究。

「我們一周見一次面,有時會以爭吵結束,有時候不會。」Hinton在一次採訪中曾回憶他的博士時光。

Yoshua Bengio和Yann LeCun要年輕一些,三人的研究互有交集。Yann LeCun現年58歲,1987至1988年,他在Hinton的實驗室中有一年的博士後研究經歷,之後加入當時最頂尖的隸屬於AT&T的貝爾實驗室。

在貝爾實驗室中,LeCun利用深度學習研發出了辨識手寫的信件和電話號碼的系統,這個成功取得了不錯的商業成功,它一度辨識了美國10%的手寫支票。

但是,當他將深度學習用於其他領域時,就遇到了重重困難,只有當訓練數據集足夠大時,深度學習才能表現得足夠好,但當時很少有什麼領域滿足這個條件。

LeCun的研究被視為異類,但依然有一些研究員和他一樣堅信深度學習的未來,包括現年55歲的,當時同在貝爾實驗室的Yoshua Bengio。

2004年,在加拿大前沿科學機構的讚助下,Geoffrey Hinton創立了專注於「神經計算和自適應感知」的項目,他也邀請了在深度學習堅持多年的Yoshua Bengio和Yann LeCun加入。

三人聯手後,就是推動深度學習不斷前進的故事。他們在2010年幫助微軟、IBM和Google拓展了語音辨識的邊界,之後在圖像辨識做了相同的工作,一直到2012年,Hinton領銜的團隊在ImageNet圖像辨識挑戰賽一戰成名,掀開了人工智慧的嶄新一頁。

現在,Hinton加入了Google,同時在多倫多大學繼續研究工作;LeCun是Facebook的首席人工智慧科學家,同時也是紐約大學的教授;Bengio拒絕了科技巨頭的邀請,他是蒙特利爾大學的教授,並創立了一家名為ElementAI的AI公司。

如果算上Hinton在博士期間的研究,他們已經默默為深度學習奉獻了30年。

「他們引領了科學典範的轉變,歷史最終選擇了他們,我充滿敬畏。」另一位AI權威,艾倫人工智慧研究所CEO,Oren Etzioni如此評價他們的獲獎。

圖靈獎沒有忘記英雄,我們也應該銘記。

本文授權轉載自愛范兒

往下滑看下一篇文章
看見自己,也掌握世代:CUBE App以「年度回顧」讓你的金融軌跡清楚現形
看見自己,也掌握世代:CUBE App以「年度回顧」讓你的金融軌跡清楚現形

多數金融 App 的年度回顧,往往停留在帳戶餘額、消費金額與投資績效的彙整,資訊清楚卻難以留下記憶點。為讓數據真正產生意義,國泰世華選擇從使用者體驗出發,以扎實的數據基礎結合視覺與敘事設計,連續五年推出 CUBE App「個人年度回顧」。

「個人年度回顧」整合超過百項用戶數據,涵蓋帳戶變化、消費總額與分類、信用卡刷卡時段偏好、基金申購、台股定期定額紀錄,甚至納入跨年度趨勢比較,用戶可以看見自己在不同時間軸的改變,將金融行為轉化為一段可以被閱讀、被分享的個人故事。

今年,國泰世華 CUBE App 進一步以「萬花筒」為視覺概念,將用戶一整年的消費、投資、存款與換匯等金融足跡,轉化為千億種可能組合的動態畫面,每一位用戶都有專屬於己的精采金融生活,此外,系統會將從這段歷程萃取出三個年度關鍵字,為一整年下註解,讓理財不僅是計算結果,而是展現自我生活型態的精彩演繹。

第二張.jpg
國泰世華連續五年推出個人回顧,今年更以「萬花筒」為視覺主軸,將使用者的 2025 年金融軌跡彙整成三個關鍵字,經典演繹使用者生活型態。
圖/ 國泰世華

看見自己,也掌握同齡族群金融行為偏好,年度回顧展讓理財更有感

連續五年深耕個人回顧體驗後,國泰世華 CUBE App 於今年首度推出「年度回顧展」,將視角從個人延伸到群體,使用者不僅能回顧自己的 2025 金融軌跡,也能一窺同齡世代的消費與金融行為整體輪廓。

年度回顧展以5大年齡層為基礎,延伸出數十種貼近生活的「人生角色」,使用者可在頁面自由切換年齡層,並選擇感興趣的角色,探索不同的理財視角,例如:「MZ世代」、「YOLO 主義者」、「第一桶金新人」、「日本大好き通」、「愛自己第一名」、「天降幸運星」、「新晉巴菲特」、「外幣玩家」、「高年級旅人」,以及低調卻資產穩健的「隱形富豪」,以角色比喻呈現讓用戶可以在比較中更理解自己,也在差異中獲得新的理財靈感。

年度回顧數據後的趨勢洞察

回顧2025年CUBE App用戶整體數據:全年出現一群「破億刷手」、消費集中於生活繳費、百貨購物、旅遊與娛樂,顯示高資產族群的消費行為仍以生活與體驗為核心。在權益使用上,超商、量販店、加油站等高頻通路仍是日常消費的主戰場。至於在投資理財方面,數據顯示基金投資用戶的定期定額扣款時間多落在每月中旬,呈現出穩定且制度化的金融習慣。

值得注意的是,2025 年用戶的數位安全意識也明顯升級。主動開啟 CUBE App「帳戶兩步驟驗證」等安全功能的用戶數成長翻倍,顯示在金融行為數位化加速的同時,用戶也更願意為自身資產安全投入行動。

第三張.jpg
國泰世華銀行不僅提供專屬於你的理財故事,更從使用體驗切入,使用者可從CUBE App 首頁(請更新至最新版本)與 LINE 官方帳號等多個入口隨時查看個人年度回顧。
圖/ 國泰世華

掌握年度回饋,讓理財更有方向

國泰世華銀行不僅提供專屬於你的理財故事,更從使用體驗切入:使用者可從CUBE App 首頁(請更新至最新版本)與 LINE 官方帳號等多個入口隨時查看個人年度回顧,享受輕鬆、便捷的金融服務體驗。

即日起至 2026 年 3 月 31 日,只要瀏覽年度回顧並完成問卷填寫,即有望獲得 300 元以上電子禮券,完成回顧後還有機會解鎖個人化優惠券,例如擁有國泰世華帳戶者可享外幣換匯優惠等,對使用者來說,這不只是一次回顧過去的體驗,更是一個啟動新一年理財行動的誘因。

從年度回顧到年度回顧展,可以清楚看到:在高度同質化的金融服務市場中,國泰世華銀行正竭盡所能的結合科技、數據與設計,陪伴用戶在不同人生階段做出更好的金融選擇,以人生的長期夥伴之姿,陪伴你我走向更好的未來。

【本文由國泰世華銀行邀稿】

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓