奈米製程技術新突破!台積電、交大找出關鍵材料首登國際期刊《自然》
奈米製程技術新突破!台積電、交大找出關鍵材料首登國際期刊《自然》

當半導體先進製程持續發展,晶片的尺寸也逐漸縮小,每次製程的演進都有許多技術需要突破,晶圓代工龍頭台積電也無可避免要投入大量研發能力來「超前部署」、解決可能在5奈米、3奈米出現的技術瓶頸。

台積電攜手交大登期刊《自然》
台積電在科技部「尖端晶體材料開發及製作計劃」的支持下,與交大的研究團隊合作,發表的最新研究登上國際頂尖學術期刊《自然》(Nature)。
圖/ 簡永昌攝影

台積電技術發展組織李連忠處長表示,除依賴公司內部研發團隊外,與學術界攜手、善用學術界的研究能量突破技術瓶頸也是一種方法,因此近期台積電在科技部「尖端晶體材料開發及製作計劃」的支持下,與交大的研究團隊合作,共同進行單原子層氮化硼的合成技術研究,成功開發出大面積晶圓尺寸的單晶氮化硼,未來將有機會應用在先進的邏輯製程技術上。台積電更是首次與產業合作的研究成果,被刊登於國際頂尖學術期刊《自然》(Nature)。

步入三奈米製程,「氮化硼」成絕緣體材料新解

氮化硼(BN)並非全新材料,之所以重要是因為其具備良好的散熱效果,更是絕佳的絕緣體材料選擇。先進製程中會需要絕緣體的存在,通常是要協助電子能順利通過晶片裡的通道,

當製程持續往下走、通道勢必越來越小,若沒能靠更好的絕緣體排除掉可能依附的電荷所造成的阻礙,晶片的效能表現將會大打折扣。

先進製程步入3奈米以後,李連忠表示過去7奈米、5奈米時所採用的絕緣體材料如氧化物等將不再適用,原因出在過去的氧化物絕緣體都是三維絕緣體,它們像是一個3D的概念、容易有其他鍵結讓晶片中的電荷依附,造成電流不易通過。

三奈米以後的製程偏向二維半導體,類似一個非常薄的架構、趨近於平面,因此李連忠提到這樣的情況需要採用的是同為二維絕緣體的材料,氮化硼正是一個好的解決方式。

即便半導體業界都知道要採用「氮化硼」作為未來先進製程可能的絕緣體材料,不過技術上依舊無法突破,這也是為什麼這次台積電與交大攜手研究的成果能刊登上《自然》期刊的主因。

不只找出絕緣體材料,如何大量生產才是關鍵

李連忠說到,過去氮化硼的生長只能長成一個不規則的晶體,若要將氮化硼真正應用到晶圓片上,就只能將不規則晶體的氮化硼撕下來貼在晶圓片上,不但效率不彰,大小不一的氮化硼也很難滿足半導體製程所需,因此若能直接在晶圓上直接生長,將能有效解決問題,只是該如何在晶圓上合成高品質單晶的單原子層氮化硼?

李連忠說過去已知的就是利用銅這個材料,但是不同晶面的銅都會影響後續的表現跟價格。

台積電晶圓代工
能成功登上《自然》最主要的原因在於台積電跟交大發現,絕緣體材料氮化硼可以透過高溫高壓的方式,藉由銅(111)在晶圓上合成高品質單晶的單原子層氮化硼。

就以銅(111)來說,是作為合成絕佳選擇,因為它容易取得且穩定,對於未來可能要步入商業化的量產來說,是比較恰當的研究選擇。

成功突破過去技術瓶頸的關鍵,李連忠表示是研究團隊發現銅(111)的表面並不是完全平面、而是有類似像階梯的模樣,因此將氮化硼分子依附在這些階梯的邊緣處,並將這個類似階梯表面的銅(111)先規劃好後,氮化硼就能在高溫高壓的處理下於晶圓上被合成、進而達成大面積晶圓尺寸的單晶氮化硼。

參與此次研究的交大教授張文豪表示,目前實驗室裡面是採用2吋晶圓片的大小做實驗,未來要複製到其他尺寸的晶圓片應該也不是問題。對於正積極佈局3奈米研發的台積電來說,此發現無疑是對接下來3奈米可能遇到的瓶頸找到出口。

半導體材料有新變化?矽可能走到盡頭

面對材料在半導體業界的重要性逐步提升,李連忠也透露矽在半導體已經有好幾十年的應用,若要用全新的材料來取代矽其實也是一大工程,因為周邊技術都需要改變、也需要花時間去應證新材料是否真的能有預期中的表現。目前業界以及相關的會議如IEDM等都對於矽材料有走到盡頭的預測,因此尋找新材料刻不容緩。

台積電透露,目前內部有將近1/10的人力、約6000-7000人投入研發工作。受到疫情影響,每年3月展開的校園徵才預計將視疫情的狀況延後舉辦,屆時將會再募集一批生力軍。

責任編輯:陳映璇

關鍵字: #台積電 #科技部
往下滑看下一篇文章
總統科學獎揭曉!梁賡義院士、葉均蔚院士用創新與堅持,寫下臺灣科學光輝新頁
總統科學獎揭曉!梁賡義院士、葉均蔚院士用創新與堅持,寫下臺灣科學光輝新頁

【總統科學獎】宗旨在於提升臺灣在國際學術界之地位,獎勵數理科學、生命科學、人文及社會科學、工程科學在國際學術研究上具創新性且貢獻卓著之學者,尤以對臺灣社會有重大貢獻之基礎學術研究人才為優先獎勵對象。

2025年11月11日,總統科學獎頒獎典禮於總統府正式舉行。2001年設立、每2年頒發1次的總統科學獎,今年已邁入第13屆,本屆的2位獲獎者,分別是生命科學組的院士梁賡義、工程科學組的院士葉均蔚。2位臺灣的科研泰斗,不僅全心全意投入創新,更樹立了典範,成為所有科研人員的榜樣。

總統賴清德在致詞時,引用諾貝爾和平獎得主曼德拉(Nelson Mandela)的話指出:「在事情完成之前,一切都看似不可能。這說明了2位院士的故事,他們對未知世界保持熱情、好奇,認真從基礎研究做起,並堅持努力到最後一刻,成功終將屬於他們。」

2025年總統科學獎得主,生命科學組 梁賡義 院士(右)、工程科學組 葉均蔚 院士(左)。
2025年總統科學獎得主,生命科學組 梁賡義 院士(右)、工程科學組 葉均蔚 院士(左)。
圖/ 數位時代

梁院士開創廣義估計方程式 ,加速新藥問世,造福千萬病患

從數學跨足生物統計、再投身高等教育與國家衛生的梁院士,從小就喜歡數學的嚴謹,在美國華盛頓大學攻讀博士期間,因為接觸到當時炙手可熱的「存活分析」,進而對生物統計產生興趣,「投入『生物統計』是條不歸路,因為我發現,統計工具的發展,可以對人類健康有間接幫助。」後來,他前往美國約翰霍普金斯大學任教,又與同事Scott Zeger研發出新的統計方法「廣義估計方程式」,突破了傳統分析方法必須假設所有樣本獨立的侷限,讓長期追蹤資料的解讀更嚴謹,也成為全球健康研究不可或缺的工具。

梁院士研究做得出色,卻不只將心力擺在學術上,他更心心念念著臺灣的發展,持續關心高等教育、國家衛生等領域。他在美國任教的28年間,幾乎年年暑假,都返國舉辦研討會,分享國際生物統計和流行病學的新知。2010年,他乾脆辭去教職,回臺擔任國立陽明大學校長,將陽明大學打造成醫學、人文並重的全人大學。

數位時代
賴總統親自頒發「2025年總統科學獎」殊榮予梁院士。
圖/ 數位時代

2017年,他又接下國家衛生研究院院長一職,並在新冠肺炎爆發期間,擔任中央流行疫情指揮中心研發組組長,與阿斯特捷利康(AstraZeneca)簽約,採購1千萬劑疫苗,完成防疫任務,「所以獲得總統科學獎,不僅是個人的榮耀,更是國家對全人教育的推動、公共衛生實踐,以及任務導向的研究重要性的肯定。能在其中有一些貢獻,我深感榮幸。」

高熵合金之父葉院士,堅持不懈打破材料學定律

被譽為「高熵合金之父」的葉院士,打破材料學界以1~2種主元素為基底的傳統,開創出能讓數十種元素混合的「高熵合金」,為元素週期表注入嶄新生命力,在半導體、智慧機械、綠能科技、國防與生醫等領域帶來突破性的應用。過去合金多以單一金屬為主,再加入少量元素微調性質,金屬種類愈多反而愈脆、延展性與硬度下降,使應用受限;然而高熵合金卻反其道而行,以4、5種以上金屬融合,展現出更佳的延展性、耐腐蝕性與硬度,重新定義合金的可能性。

令人驚訝的是,30年前葉院士提出高熵合金構想時,曾被質疑「觀念錯誤、毫無可能」。他不畏質疑,透過紮實的實驗與論證,於2004年一口氣發表5篇高熵材料論文,為高熵合金命名、定義並奠定理論基礎,後續更平均每年發表逾10篇研究,提出高熵效應、嚴重晶格扭曲效應、緩慢擴散效應與雞尾酒效應等核心概念,開創全新的材料科學典範。

數位時代
賴總統親自頒發「2025年總統科學獎」殊榮予葉院士。
圖/ 數位時代

如今,高熵合金不只在學界掀起熱潮,更成功落地產業。「學以致用非常重要!」葉院士強調,學術研究不該停留在象牙塔,而應投入產業、協助解決關鍵瓶頸。他不僅與國立清華大學共同成立「高熵材料研發中心」,也創辦全球首家高熵材料公司,推動技術轉移與產業升級,讓高熵合金真正走向世界舞臺。

所有總統科學獎得獎人的科學成就及重要貢獻,不僅提升臺灣學術聲譽及國際競爭力,對於增進人類生活福祉更有深遠的影響,實為臺灣學術界的最高典範。而本屆梁院士、葉院士2位得獎人終身投入科學探索、人才培育的成果,嘉惠了整個社會,更成就跨世代的深遠影響,為臺灣科學寫下光輝一頁。

【總統科學獎委員會 廣告】

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓