不是未來,就是現在!人工智慧走入商用領域
不是未來,就是現在!人工智慧走入商用領域
2016.03.08 | 科技

圖說明
照片來自:《機械公敵》電影劇照。

人工智慧的研究,最近又突然變得火紅,極具未來指標的幾個重大應用,都與人工智慧的技術突破有著密不可分的關係。科技巨頭們紛紛投入相關領域,也讓人工智慧正式轉向商用化之路。

圖說明
圖說:機器人助手Romeo。圖片來自:Aldebaran Robotics

想像有一天這些都會發生,《鋼鐵人》的人工智慧管家賈維斯在你需要時隨時出現,解決生活大小的疑難雜症;甚至,人工智慧軟體越來越個人化,「不僅能幹而且知心」,撫慰現代人寂寞的心靈,也許哪天你也會愛上《雲端情人》裡的莎曼珊。

電影裡蘊含著人類對科技的期待,然而人工智慧到底是什麼?我們天馬行空,有許多想像,許多人都把人工智慧跟機器人劃上等號,也許是2001年《A.I.人工智慧》裡的機器男孩大衛,形象太鮮明,讓我們覺得,能自主思考、懂常識、具有人類外表的機器人,很快就會出現。

真是如此嗎?是也,非也。人工智慧發展到極致,具有自主思考的機器人終究會來臨,然而現階段我們看到的人工智慧突破,是更廣泛的研究領域。舉凡Google翻譯、個人語音助理、自動駕駛車、不需操控的無人機、具有感知情緒的機器人、可以人機互動協作的工業機器人、診斷癌症、股票自動交易,背後都有人工智慧。根據美銀美林估計,2020年,全球人工智慧市場規模將達1,530億美元,增加三倍。

希捷的研究預測,2025年將有超過400億台連網裝置。未來不再是單一載具獨霸的社會,而是多元載具並存的新時代。隨著硬體、運算、雲端、資料分析、演算法等等技術陸續到位及突破,每個人擁有的裝置將從三個增加到超過1千個。能夠同時回饋不同載具應用的底層會是什麼?智慧型手機嗎?當然不是。情境智慧新創Snips AI執行長欣迪(Rand Hindi)在TED演講上指出,「人工智慧是串起這些裝置、達到無所不在運算(Ubiquitous Computing)的關鍵!」這些連網裝置有天將會像電一樣自然地從在於生活之中,由人工智慧幫忙篩選重要資訊。

圖說明
圖說:Snips AI執行長欣迪(Rand Hindi)。照片來自:TEDx Paris via flickr, cc license

第三次人工智慧浪潮

然而,人工智慧的進展卻不如想像中快速,從1956年麥卡錫(John McCarthy)在達特茅斯研討會首次提出人工智慧一詞,人工智慧的概念已出現超過60年。回顧這60年,人工智慧經歷三次興衰,1950年代對於機器人同伴出現,抱持十分樂觀的想像。到了1970年代,這份情懷就崩盤了,科學家發現西洋棋機器就只會下西洋棋而已,沒有期待中的聰明。然而1980年代第二波人工智慧浪潮再度興起,美國國防部砸下數十億美元研究經費,希望讓機器人上戰場打仗,後來卻無功而返,讓人工智慧研究從此蒙上陰影。

如今,人工智慧的第三次浪潮來臨,人工智慧在垂直領域表現得很好,一次又一次跟人類的比拚中,都展現出電腦運算能力的大躍進,人工智慧不可同日而語了。1997年IBM超級電腦深藍打敗全球西洋棋冠軍卡斯帕洛夫,震驚世人;2011年IBM超級電腦華生,在益智搶答競賽中用語言分析演算法打敗兩位節目史上最強冠軍,再度引起譁然。

這一次,人工智慧的突破,增添了我們的期待,但是否意謂具有自主思考與學習的人工智慧時代就將到來,亦或又只是再一次地過度樂觀想像?紐約市立大學理論物理學教授加來道雄在《2050科幻大成真》一書中指出,「雖然好萊塢電影讓我們以為『終結者』般的機器人很快就會出現,但是打造人工心智的困難程度比前人所想的還要高。」他認為,人工智慧演化至今仍十分原始,還在試著學習基礎的事物,認識世界,所以還沒有辦法模擬真實的未來。

人工智慧從實驗室走入商用領域

仔細分析,「人工智慧的發展,至少還有圖形辨識與普通常識兩個問題待解決!」加來道雄說。首先,人工智慧系統目前仍難靠自動學習來辨識物體,這也是為什麼從2012年開始,Google、蘋果、微軟、IBM、Facebook、Amazon及雅虎等科技巨頭們,紛紛收購人工智慧公司來尋求突破,其中包括深度學習(類神經網路)、語言翻譯、電腦視覺、圖像辨識、情緒辨識等領域都受到科技巨頭的關注,也因為如此,人工智慧技術在近幾年有了重要突破。2015年,是人工智慧大有嶄獲的一年,正式從實驗室走入商用領域。

延伸閱讀:一篇文章看懂Google人工智慧帝國,為何這裡一切都是AI

其次是關於常識問題,如何讓人工智慧具有自主學習能力,不斷累積常識,進而達到舉一反三?關於這部分,深度學習的技術突破,攸關人工智慧發展的未來。Facebook創辦人兼執行長佐克伯說,非監督式學習才能讓人工智慧學習常識。

他在2016年要挑戰像賈維斯一樣操作簡單的AI管家,他並分析機器學習主要仰賴監督式學習,透過大量資料進行模式識別,例如,透過數千張照片讓AI系統學習辨識Facebook好友,在上傳照片時幫忙標籤朋友。然而人類學習新事物時,通常不需要學1千次,模式識別不僅無法讓人工智慧具備常識,就連舉一反一都做不到。

麻省理工學院、紐約大學及多倫多大學所開發的貝葉斯程式學習BPL,讓電腦終於有了舉一反三的能力,但即使如此,大概也要到本世紀末,人工智慧才能具有猴子般的智慧,並有自己的意識。各界對人工智慧將會威脅人類的擔憂或許還太早,因為距離創造出賈維斯和莎曼珊還有很長一段路要走呢!

科技巨頭加入人工智慧戰局

Google
2013年|收購深度神經網路公司DNNresearch。
2014年|收購深度學習公司DeepMind。
2015年|無人車上路測試,預計2020年商用化;開源深度學習系統TensorFlow程式碼。
2016年|Google DeepMind AlphaGo系統打敗歐洲圍棋高手;Google與半導體新創企業Movidius合作深度學習手機;欲將神經網路RankBrain結合搜尋引擎。

微軟
2014年|推出個人數位語音助理Cortana。
2015年|推出亞洲聊天機器小冰;收購R語言商業方案提供商Revolution Analytics與以色列文本分析新創Equivio;推出應用測年齡how-old.net和測雙胞胎TwinsOrNot.net。
2016年|收購智慧輸入新創SwiftKey;開源深度學習語音圖像辨識CNTK;推出測你是哪種狗應用What-dog.net。

IBM
2012年|收購人力資源管理公司Kenexa。2014年華生已應用在醫療、金融、法律、學術、煮飯。
2015年|收購自然語言處理服務商AlchemyAPI、IBM宣布開源機器學習平台SystemML。
2016年|軟銀機器人Pepper已成功導入IBM超級電腦華生。

Facebook
2015年|正式成立人工智慧研究團隊;展示人工智慧助理M;公布人工智慧硬體框架Big Sur並開源;收購語音辨識技術Wit.ai。
2016年底|打造跟賈維斯一樣的AI管家;訓練人工智慧系統下圍棋。

蘋果
2013年|收購自動語音辨識技術公司Novauris。
2015年|收購口語辨識新創VocalIQ和影像辨識新創Perceptio。
2016年|收購人臉及情緒辨識技術的新創公司Emotient;聘雇教Siri運動知識的軟體工程師。

Tesla
2014年|Tesla執行長馬斯克投資模仿人腦的人工智慧公司Vicarious。
2015年|馬斯克投資非盈利人工智慧中心OpenAI,防止AI危害人類;推出電動車自動駕駛系統。

Amazon
2012年|收購機器人倉庫設備商Kiva Systems。
2013年|收購文字轉語音公司Ivona和語音辨識App Evi Technology。
2015年|用人工智慧技術發現假評論及評分;推出語音助理Echo;釋出Alexa軟體開發套件。

Yahoo
2013年|收購圖像辨識新創IQ Engines及自然語言處理廠商SkyPhrase。

你應該要知道的人工智慧大事

1943年
形式神經元的數學模型被提出,開創類神經網路研究時代。
1950年
艾倫.圖靈在論文中預言人工智慧機器的可能,並設計圖靈測試。
1956年
約翰.麥卡錫在達特茅斯研討會首次提出人工智慧一詞。
1959年
麥卡錫、閔斯基在麻省理工學院創立第一個人工智慧實驗室,開啟人工智慧計畫。
亞瑟.塞繆爾設計出全球第一個自動學習的西洋跳棋系統,機器學習和遊戲AI開始發展。
1980年
專家系統R1(XCON)出現,全球公司開始研發專家系統。
1986年
大衛.魯姆哈特等人發明倒傳導網路,類神經網路研究沉寂多時再度活躍。
1997年
IBM超級電腦深藍打敗全球西洋棋冠軍蓋瑞.卡斯帕洛夫。
2005年
史丹佛大學開發出自動行駛機器人,贏得DARPA挑戰大賽頭獎。
2007年
Siri用自然語言處理技術開發iOS人工智慧助理軟體,2010年被蘋果收購。
2010年
Google實驗室Google X發表自動駕駛車專案。
2011年
IBM超級電腦華生在益智搶答競賽中打敗節目史上最強冠軍。
Google Brain成立,2012年用YouTube的1千萬張相片自動學習辨識貓臉。
2015年
MIT、紐約大學及多倫多大學開發出貝葉斯程式學習BPL,讓電腦終於能舉一反三。
2016年
Google子公司DeepMind的AlphaGo系統用深度學習打敗歐洲圍棋冠軍。

圖片提供/Aldebaran Robotics

往下滑看下一篇文章
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?

AI 與數據正快速落地至各行各業,從製造、金融、電信、醫療到零售,應用速度不斷加快。但在每年交易規模至少新台幣 1900 億元的商用地產領域,卻長期受到數據破碎且不透明的限制,只能仰賴人力蒐集資訊,再憑直覺和經驗去解讀資訊、做出決策,使 AI 潛在價值難以真正發揮。為回應產業轉型的核心痛點,方睿科技首度舉辦「商用地產生態系年會 2026 Raise Day」,以開放式平台為核心,串聯專業地產服務商、空間相關企業服務商、產業專業人士等多元角色,勾勒出 B2B 企業服務生態系的全貌,希望能透過科技促進數據流動,為商用地產企業協作模式開啟新的可能性。

方睿科技
方睿科技首度舉辦 2026 Raise Day,以開放式平台為核心串聯多元角色,推動商用地產邁向產業共好的新階段。
圖/ 數位時代

方睿科技雙軌策略,讓 AI 成為商用地產的決策引擎

方睿科技創辦人暨執行長吳健宇指出,在 AI 時代,人應該專注於「最有價值」的工作;然而在商用地產業中,專業人士卻有約 70% 的時間耗費在資料蒐集與整理上,真正用於判斷與決策的時間僅約 10%。方睿科技希望翻轉這樣的時間分配,讓人力從低價值的資料處理中解放,將更多心力投入在判斷、溝通與決策等創造價值的商業活動。

方睿科技
方睿科技創辦人暨執行長 吳健宇
圖/ 數位時代

為此,方睿科技提出兩條實踐路徑。第一條是建構出具備完整性、易用性與進化性的商用地產智慧平台,運用 AI 技術,將過去產業中破碎、非結構化的資料,重塑為可被運算、可驗證的標準化數據,並結合圖表與互動式介面,讓使用者能夠快速得到完整市場資訊,實現「用戶即專家」的目標。

第二條則是推動生態系聯盟,將不動產視為企業服務的核心載體,串聯設計、家具、搬遷、清潔等多元服務夥伴,使空間不再只是靜態標的,而是承載案例、服務與數據回饋的生態系節點。透過生態系夥伴累積的實務資料與服務紀錄,平台得以發展「資料即推薦」模式,推動商用地產從單點交易,邁向可擴張的 B2B 服務網絡。

獨創「資料飛輪」機制,實現用戶即專家目標

在 AI 模型日益普及的當下,真正的競爭關鍵已不在模型本身,而是能否有效率地收集資料、提高資料品質,並將其與實際決策流程緊密結合。為此,方睿科技獨家設計出一個由「資料收集、資料精煉、專家把關、決策反饋」組成的資料飛輪,回應商用地產長期面臨的資料破碎與決策效率低落問題,成為方睿科技實踐願景的第一條路徑。

方睿科技技術長郭彥良進一步說明,資料飛輪機制的運作架構。首先在資料收集階段,必須系統性蒐集公開資料、內部檔案與報告,並透過 AI 協作將圖片等非結構化資訊轉換為可用的結構化數據。接著進入資料精煉,透過資料清洗與實體對齊,將原始資訊從單純的可閱讀升級為可比較、可推論的決策依據。第三步專家把關,則引入不動產專家進行校正與產業判讀,補上模型難以理解的規則與慣例,確保關鍵數據的正確性。最後的決策反饋階段,藉由收集使用者提問與行為,檢視現有資料是否足夠精準,再回到專家校正與補齊流程,使整個系統能隨使用頻率提升而持續進化。

在資料飛輪的運作基礎上,方睿科技正積極研發商用地產智慧平台 PickPeak。郭彥良表示,PickPeak 並非單純的物件搜尋工具,而是結合深度資料與 AI 的決策輔助平台。使用者可透過自然語言互動,提出人數、預算、區位、產業屬性等多重條件,再由系統動態生成可比較、可驗證的選址方案,真正將 AI 從「回答問題的工具」,轉化為「陪伴決策的數位專家」。

方睿科技
方睿科技技術長 郭彥良
圖/ 數位時代

創新 Data to win 模式,讓 AI 深入商用地產各階段決策流程

不過,單靠數據整合與 AI 應用仍不足以支撐產業全面升級,因此,方睿科技提出的第二條路就是,推動產業生態系聯盟,整合商用地產市場上不同角色的數據,讓 AI 能夠真正成為商用地產決策時的智慧引擎。

方睿科技不動產知識創新中心總監曾凡綱指出,目前在企業、房東或物業主與各類服務供應商之間,缺乏有效的整合機制,導致企業在選址與空間規劃過程中,難以快速找到真正合適的服務與解決方案,形成明顯的產業斷點。

為解決這些斷點,方睿科技提出「Data to win」模式,以資料取代傳統「Pay to win(付費買廣告)」思維,讓真正具備經驗與實績的服務夥伴,在適當的決策節點被看見。

曾凡綱說明,在廣告投放效益越來越低的情況下,企業服務商面臨的問題已不只是「如何曝光」,而是「如何在對的地方被看見」,這將是未來的市場勝出指標;而 Data to win 正好可以協助企業服務商建立此能力,方睿科技將生態系夥伴所擁有的案例、服務紀錄與產業知識等資料,經過去識別化與結構化處理後,再嵌入企業決策流程中,讓推薦不再來自廣告投放,而是真實、可被驗證的使用經驗,透過這樣的機制,不僅提升企業決策的準確度,也能同步放大生態系夥伴在合作中的實質價值。

舉例來說,方睿科技整合辦公傢俱夥伴 Backbone 班朋實業長期累積的辦公室規劃案例與平面圖資料,讓企業在選址階段,就能同步評估空間規劃方案,加速決策流程。又如,整合出行服務夥伴 USPACE 悠勢科技的服務資料,並呈現在地圖上,協助企業評估辦公據點的交通便利性,優化員工日常通勤與出行體驗。此外,平台也可整合大樓的 ESG 認證、公共設施與服務層資訊,協助企業快速篩選符合需求的辦公大樓,提升進駐媒合效率。

方睿科技
方睿科技不動產知識創新中心總監 曾凡綱
圖/ 數位時代

「Raise Day 只是這場變革的起點。」吳健宇強調,方睿科技已經透過投資與合夥模式,將布局延伸至專業地產服務與空間經營領域,至今旗下已有商用不動產仲介、顧問與估價等專業服務的宇豐睿星,以及聚焦商用地產代銷市場的希睿創新置業。透過直接參與第一線實務運作,方睿得以更深入理解產業真實痛點,讓科技不只是工具,而能真正回應實際決策與服務需求。

此外,方睿科技未來也將持續擴大「商用地產 x 企業服務生態系」聯盟,目前包括 Backbone、USPACE、IKEA For Business、潔客幫等企業服務夥伴已率先加入;接下來,方睿科技將邀請更多擁有關鍵數據與專業能力的企業服務商加入,讓數據在安全、可控的前提下流動,進一步釋放商用地產在選址、營運與企業服務等全生命週期中的結構性價值,為產業轉型啟動下一個關鍵階段。

方睿科技
右起方睿科技共同創辦人暨營運長陳致瑋、USPACE悠勢科技共同創辦人暨執行長宋捷仁 、Backbone班朋實業創辦人暨執行長廖家葳,透過企業服務生態系合作共同為產業啟動下一個關鍵階段。
圖/ 數位時代

方睿科技官網: https://www.funraise.com.tw

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓