不是未來,就是現在!人工智慧走入商用領域
不是未來,就是現在!人工智慧走入商用領域
2016.03.08 | 科技

圖說明
照片來自:《機械公敵》電影劇照。

人工智慧的研究,最近又突然變得火紅,極具未來指標的幾個重大應用,都與人工智慧的技術突破有著密不可分的關係。科技巨頭們紛紛投入相關領域,也讓人工智慧正式轉向商用化之路。

圖說明
圖說:機器人助手Romeo。圖片來自:Aldebaran Robotics

想像有一天這些都會發生,《鋼鐵人》的人工智慧管家賈維斯在你需要時隨時出現,解決生活大小的疑難雜症;甚至,人工智慧軟體越來越個人化,「不僅能幹而且知心」,撫慰現代人寂寞的心靈,也許哪天你也會愛上《雲端情人》裡的莎曼珊。

電影裡蘊含著人類對科技的期待,然而人工智慧到底是什麼?我們天馬行空,有許多想像,許多人都把人工智慧跟機器人劃上等號,也許是2001年《A.I.人工智慧》裡的機器男孩大衛,形象太鮮明,讓我們覺得,能自主思考、懂常識、具有人類外表的機器人,很快就會出現。

真是如此嗎?是也,非也。人工智慧發展到極致,具有自主思考的機器人終究會來臨,然而現階段我們看到的人工智慧突破,是更廣泛的研究領域。舉凡Google翻譯、個人語音助理、自動駕駛車、不需操控的無人機、具有感知情緒的機器人、可以人機互動協作的工業機器人、診斷癌症、股票自動交易,背後都有人工智慧。根據美銀美林估計,2020年,全球人工智慧市場規模將達1,530億美元,增加三倍。

希捷的研究預測,2025年將有超過400億台連網裝置。未來不再是單一載具獨霸的社會,而是多元載具並存的新時代。隨著硬體、運算、雲端、資料分析、演算法等等技術陸續到位及突破,每個人擁有的裝置將從三個增加到超過1千個。能夠同時回饋不同載具應用的底層會是什麼?智慧型手機嗎?當然不是。情境智慧新創Snips AI執行長欣迪(Rand Hindi)在TED演講上指出,「人工智慧是串起這些裝置、達到無所不在運算(Ubiquitous Computing)的關鍵!」這些連網裝置有天將會像電一樣自然地從在於生活之中,由人工智慧幫忙篩選重要資訊。

圖說明
圖說:Snips AI執行長欣迪(Rand Hindi)。照片來自:TEDx Paris via flickr, cc license

第三次人工智慧浪潮

然而,人工智慧的進展卻不如想像中快速,從1956年麥卡錫(John McCarthy)在達特茅斯研討會首次提出人工智慧一詞,人工智慧的概念已出現超過60年。回顧這60年,人工智慧經歷三次興衰,1950年代對於機器人同伴出現,抱持十分樂觀的想像。到了1970年代,這份情懷就崩盤了,科學家發現西洋棋機器就只會下西洋棋而已,沒有期待中的聰明。然而1980年代第二波人工智慧浪潮再度興起,美國國防部砸下數十億美元研究經費,希望讓機器人上戰場打仗,後來卻無功而返,讓人工智慧研究從此蒙上陰影。

如今,人工智慧的第三次浪潮來臨,人工智慧在垂直領域表現得很好,一次又一次跟人類的比拚中,都展現出電腦運算能力的大躍進,人工智慧不可同日而語了。1997年IBM超級電腦深藍打敗全球西洋棋冠軍卡斯帕洛夫,震驚世人;2011年IBM超級電腦華生,在益智搶答競賽中用語言分析演算法打敗兩位節目史上最強冠軍,再度引起譁然。

這一次,人工智慧的突破,增添了我們的期待,但是否意謂具有自主思考與學習的人工智慧時代就將到來,亦或又只是再一次地過度樂觀想像?紐約市立大學理論物理學教授加來道雄在《2050科幻大成真》一書中指出,「雖然好萊塢電影讓我們以為『終結者』般的機器人很快就會出現,但是打造人工心智的困難程度比前人所想的還要高。」他認為,人工智慧演化至今仍十分原始,還在試著學習基礎的事物,認識世界,所以還沒有辦法模擬真實的未來。

人工智慧從實驗室走入商用領域

仔細分析,「人工智慧的發展,至少還有圖形辨識與普通常識兩個問題待解決!」加來道雄說。首先,人工智慧系統目前仍難靠自動學習來辨識物體,這也是為什麼從2012年開始,Google、蘋果、微軟、IBM、Facebook、Amazon及雅虎等科技巨頭們,紛紛收購人工智慧公司來尋求突破,其中包括深度學習(類神經網路)、語言翻譯、電腦視覺、圖像辨識、情緒辨識等領域都受到科技巨頭的關注,也因為如此,人工智慧技術在近幾年有了重要突破。2015年,是人工智慧大有嶄獲的一年,正式從實驗室走入商用領域。

延伸閱讀:一篇文章看懂Google人工智慧帝國,為何這裡一切都是AI

其次是關於常識問題,如何讓人工智慧具有自主學習能力,不斷累積常識,進而達到舉一反三?關於這部分,深度學習的技術突破,攸關人工智慧發展的未來。Facebook創辦人兼執行長佐克伯說,非監督式學習才能讓人工智慧學習常識。

他在2016年要挑戰像賈維斯一樣操作簡單的AI管家,他並分析機器學習主要仰賴監督式學習,透過大量資料進行模式識別,例如,透過數千張照片讓AI系統學習辨識Facebook好友,在上傳照片時幫忙標籤朋友。然而人類學習新事物時,通常不需要學1千次,模式識別不僅無法讓人工智慧具備常識,就連舉一反一都做不到。

麻省理工學院、紐約大學及多倫多大學所開發的貝葉斯程式學習BPL,讓電腦終於有了舉一反三的能力,但即使如此,大概也要到本世紀末,人工智慧才能具有猴子般的智慧,並有自己的意識。各界對人工智慧將會威脅人類的擔憂或許還太早,因為距離創造出賈維斯和莎曼珊還有很長一段路要走呢!

科技巨頭加入人工智慧戰局

Google
2013年|收購深度神經網路公司DNNresearch。
2014年|收購深度學習公司DeepMind。
2015年|無人車上路測試,預計2020年商用化;開源深度學習系統TensorFlow程式碼。
2016年|Google DeepMind AlphaGo系統打敗歐洲圍棋高手;Google與半導體新創企業Movidius合作深度學習手機;欲將神經網路RankBrain結合搜尋引擎。

微軟
2014年|推出個人數位語音助理Cortana。
2015年|推出亞洲聊天機器小冰;收購R語言商業方案提供商Revolution Analytics與以色列文本分析新創Equivio;推出應用測年齡how-old.net和測雙胞胎TwinsOrNot.net。
2016年|收購智慧輸入新創SwiftKey;開源深度學習語音圖像辨識CNTK;推出測你是哪種狗應用What-dog.net。

IBM
2012年|收購人力資源管理公司Kenexa。2014年華生已應用在醫療、金融、法律、學術、煮飯。
2015年|收購自然語言處理服務商AlchemyAPI、IBM宣布開源機器學習平台SystemML。
2016年|軟銀機器人Pepper已成功導入IBM超級電腦華生。

Facebook
2015年|正式成立人工智慧研究團隊;展示人工智慧助理M;公布人工智慧硬體框架Big Sur並開源;收購語音辨識技術Wit.ai。
2016年底|打造跟賈維斯一樣的AI管家;訓練人工智慧系統下圍棋。

蘋果
2013年|收購自動語音辨識技術公司Novauris。
2015年|收購口語辨識新創VocalIQ和影像辨識新創Perceptio。
2016年|收購人臉及情緒辨識技術的新創公司Emotient;聘雇教Siri運動知識的軟體工程師。

Tesla
2014年|Tesla執行長馬斯克投資模仿人腦的人工智慧公司Vicarious。
2015年|馬斯克投資非盈利人工智慧中心OpenAI,防止AI危害人類;推出電動車自動駕駛系統。

Amazon
2012年|收購機器人倉庫設備商Kiva Systems。
2013年|收購文字轉語音公司Ivona和語音辨識App Evi Technology。
2015年|用人工智慧技術發現假評論及評分;推出語音助理Echo;釋出Alexa軟體開發套件。

Yahoo
2013年|收購圖像辨識新創IQ Engines及自然語言處理廠商SkyPhrase。

你應該要知道的人工智慧大事

1943年
形式神經元的數學模型被提出,開創類神經網路研究時代。
1950年
艾倫.圖靈在論文中預言人工智慧機器的可能,並設計圖靈測試。
1956年
約翰.麥卡錫在達特茅斯研討會首次提出人工智慧一詞。
1959年
麥卡錫、閔斯基在麻省理工學院創立第一個人工智慧實驗室,開啟人工智慧計畫。
亞瑟.塞繆爾設計出全球第一個自動學習的西洋跳棋系統,機器學習和遊戲AI開始發展。
1980年
專家系統R1(XCON)出現,全球公司開始研發專家系統。
1986年
大衛.魯姆哈特等人發明倒傳導網路,類神經網路研究沉寂多時再度活躍。
1997年
IBM超級電腦深藍打敗全球西洋棋冠軍蓋瑞.卡斯帕洛夫。
2005年
史丹佛大學開發出自動行駛機器人,贏得DARPA挑戰大賽頭獎。
2007年
Siri用自然語言處理技術開發iOS人工智慧助理軟體,2010年被蘋果收購。
2010年
Google實驗室Google X發表自動駕駛車專案。
2011年
IBM超級電腦華生在益智搶答競賽中打敗節目史上最強冠軍。
Google Brain成立,2012年用YouTube的1千萬張相片自動學習辨識貓臉。
2015年
MIT、紐約大學及多倫多大學開發出貝葉斯程式學習BPL,讓電腦終於能舉一反三。
2016年
Google子公司DeepMind的AlphaGo系統用深度學習打敗歐洲圍棋冠軍。

圖片提供/Aldebaran Robotics

往下滑看下一篇文章
外送平台變軍師!foodpanda用數據當武器,殺進轉型顧問市場
外送平台變軍師!foodpanda用數據當武器,殺進轉型顧問市場

台灣餐飲業正面臨「三高」壓力——店租高、物價高、人力成本高。疫情後商圈景氣逐漸回流,店面需求攀升帶動餐飲業租金持續上揚;與此同時,根據行政院主計總處統計,台灣食物類物價自2021年起連續四年上漲,累積漲幅達13.98%;儘管2025年基本工資調漲4%,仍難以紓解餐飲業缺工困境,勞動部人力需求調查顯示,住宿餐飲業人力缺口估計高達24萬人。

面對嚴峻挑戰,餐飲經營者必須追求單位產出極大化,方能在有限資源下維持營運效益。對此,全台最大外送平台 foodpanda 憑藉每日百萬活躍用戶的數據優勢,透過精細化分析平台數據金礦,提出「極效經營」新思維,協助餐飲業者投入極小資源、創造極大效益,開啟可持續的經營新常態。

foodpanda拋出新極效思維,以數據洞察助攻極效經營

餐飲經營效益的關鍵,或許不只在於菜好不好吃。許多店家面對業績不振時,直覺反應往往是延長營業時間、加碼廣告投放或更換菜單,卻不一定能看到改善效果。攸關經營效益的問題,難道只能憑感覺判斷?

Foodpanda
圖/ 數位時代

foodpanda 商務總監簡紫涵指出,這些「憑感覺」的決策缺乏數據支持,所以適得其反。例如延長營業時間雖能多開放時段,但若缺乏消費需求,只是徒增人力與水電成本;顧客評價不佳,也未必完全與餐點味道相關,可能是包裝體驗造成印象扣分;為了衝業績而進行廣告投放,若沒有精準鎖定目標客群,流量依舊難以轉化為營收。

「工具不缺,缺的是以數據為基礎的問題意識與策略思維。」對此,foodpanda 率先提出「新極效思維」,將經營效益拆解為三個核心變數:人效、時段效、通路效,將平台累積的海量消費數據金礦轉換成深度洞察,以營運顧問的角色協助店家重新理解營收從哪裡來、何時來,以及如何放大,取代傳統的經驗式判斷。

集結產學資源,打造接地氣的數位轉型方案

從POS系統、訂單系統到報表介面,儘管數位工具普及,實際能將數據轉化為經營策略的餐飲業者卻少之又少。深耕台灣13年的 foodpanda,累積超過 10 億筆訂單,合作店家逾萬間,實地輔導過上千商家;平台所累積的數據不只包含訂單紀錄,也涵蓋消費者輪廓、消費頻率、地區飲食習慣、客群結構與品項偏好等,對多數中小餐飲業而言,都是難以自行蒐集的珍貴經營資產。

為了讓數據真正轉化為行動力,foodpanda 自2024年起組建百人商業顧問團隊,經過內部的商務學院專案分享、跨部門培訓與餐飲實戰演練,將平台 know-how 轉化為輔導實力。同時,foodpanda也攜手財團法人商業發展研究院以及 AMT 亞太行銷數位轉型聯盟協會,補強數位轉型方法論,針對不同餐飲業者量身打造成長方案,在台率先推出「餐飲錢力股計畫」,以「診斷-訓練-優化」三階段打造轉型模型:

  1. 數據認知期 :透過12題線上檢測,免費協助店家快速盤點經營現況,建立數據意識。
  2. 行為調整期 :針對檢測結果與平台分析,產出「客製化錢力數據報告」,內容涵蓋曝光數、轉換率、回購率、客群結構與市場趨勢,並由顧問解析機會點,制定行動方案,如新客優惠、廣告投放策略、商品組合優化等,並以月度、季度或半年度為單位持續追蹤與調整。
  3. 數據經營期 :透過「錢力股實戰坊」4小時濃縮課程與顧問小組,協助店家從認識數據、活用數據,到發展長期經營策略。
Foodpanda
圖/ 數位時代

簡紫涵指出,推動數位轉型的最大阻力往往來自「心態」。許多商家老闆秉持「東西好吃就好」的傳統觀念,對於改變現狀抱持疑慮。因此,foodpanda 顧問的角色不僅是提供數據分析,更要與店家並肩作戰,明確告知投入成本、執行時間與預期成效,並透過同業成功案例創造「跟進效應。」

而顧問服務的核心,則是將數據洞察落地為行動——從菜單設計、商品攝影到促銷搭配,確保流量變現。例如:北部一間便當店,新客轉換率低,經雙軌策略(新客優惠+廣告曝光)半年營收翻倍並展店;一間早餐店則在調整商品組合並搭配廣告後,成功帶動業績與客數雙成長;還有一間滷味店透過菜單 A/B 測試,成功提升高客單價品項的銷售比例。

不只是外送平台,foodpanda也是專業餐飲轉型顧問

外界談到外送平台,往往聚焦於抽成比例與外送服務,卻鮮少注意到,它們同樣能成為餐飲業的成長推手,就像 foodpanda 發起的「餐飲錢力股計畫」,為合作商家全面賦能、提供全額免費的顧問服務,除了客製化潛力數據報告,非合作商家也可透過12題線上檢測進行數位轉型健檢,並免費參加實體工作坊。

首波實戰坊將於9月啟動,首批輔導50間潛力商家,目標逐步擴大至每年1,000間,協助業者翻倍成長。「我們與餐飲業是互利共生,商家成長,我們才有長期合作的基礎。」簡紫涵強調,只要有改變意願且具成長潛力,合作商家皆能獲得顧問服務。

據統計,創業後三個月是餐飲業的存活關鍵期,奠定能否進入長期成長循環的基礎。「數位轉型不是少數大型商家的專利,而是餐飲業的新常態。懂得善用數據的店家會不斷成長,不懂的則可能被淘汰。」

不侷限於外送平台的角色,foodpanda 更願意擔起專業餐飲轉型顧問的責任,發揮數據力與企業影響力,讓餐飲業能站在巨人的肩膀上成長,從存活走向壯大,更帶動餐飲產業發展更上層樓。

立即領取專屬錢力報告

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓