專訪Mashable CTO:人工智慧如何幫助媒體編輯提升效率
專訪Mashable CTO:人工智慧如何幫助媒體編輯提升效率
2016.11.16 | 人物

科技媒體Mashable創建於2005年7月,其創始人是當時年僅19歲的蘇格蘭人皮特.卡什莫爾(Pete Cashmore)。在那之前皮特沒有任何媒體工作經驗,網站主要從社群網路上追蹤最受使用者關注的科技公司新聞。到現在,Mashable 在全球的Alexa排名已經達到516名,成為世界上訪問量最多的媒體之一。

Mashable
圖/ Mashable

不走傳統新聞操作,而是根據社群媒體熱門內容挑文章

正是因為Mashable的創始人沒有任何媒體從業經歷,這個科技媒體才沒有從傳統媒體那裡繼承任何過時的新聞操作方式。在Mashable創辦初期,整個團隊20多人每天最重要的工作是在Facebook、Twitter和LinkedIn等社群網路上查看自己關注的大量使用者都在轉發什麼內容,並根據熱門內容撰寫相關的文章。

後來隨著現任CTO羅賓.彼得森(Robyn Peterson)的加入,Mashable開始使用自己開發人工智慧工具來代替團隊每天在社群網路上追蹤內容的工作。羅賓帶領研發團隊設計了一個人工智慧資料分析系統Velocity,透過自然語言理解技術分析社群網路使用者對相關事件的討論,並透過視覺化的圖表向編輯部預測可能會爆發的熱點內容。

開發人工智慧追蹤數據、預測話題熱點

在今年的騰訊網媒體高峰論壇上,羅賓接受了《PingWest品玩》的專訪,並詳細解釋了Velocity系統的工作原理。羅賓表示Velocity會根據社群網路上的分享和討論生成一個熱度曲線,它其實很類似於經濟學中的供求曲線,橫軸代表時間,縱軸代表需求量。相應的,當某一個話題的需求量(熱度)提升時,Mashable就會生產相關的內容進行「供應」。

「舉個例子,透過分析我們預測到接下來一個關於食品比較大的事件有可能是《紐約時報》上所發表的轉基因番茄的故事,現在關於這條新聞的轉發量只有幾十條,但我們的系統可以預測到接下來幾個小時它的轉發量將達到上萬。」羅賓說。

使用自然語言處理等人工智慧技術的基礎是能夠擁有大量資料,Volecity每天能夠分析300萬個不同頁面的連結資料,這些連結包括社群網路貼文、文章、圖片和影片,並從中分析出下一個熱點。

2012年12月,羅賓曾在Mashable上發表了一篇文章稱媒體應該像程式師做產品一樣生產內容。在這篇文章裡,羅賓給了正在衰落的媒體公司四點建議,分別是:社群網路比搜尋引擎更重要、擁抱行動網路、提供個性化的廣告和以產品為主導生產內容

羅賓認為媒體公司的衰落主要在於工程師幾乎不為媒體公司工作來幫助他們創造更好的資料探勘工具,但換句話來說,就是媒體公司根本就不重視工程師和產品經理的作用。但沒有任何傳統媒體基因的Mashable卻利用資料探勘工具和演算法成為了新媒體裡的佼佼者。

Mashable CTO羅賓.彼得森
沒有任何傳統媒體基因的Mashable卻利用資料探勘工具和演算法成為了新媒體裡的佼佼者。

在Mashable的網站上,每篇文章下面都會有一個小小的曲線圖表,讀者可以直觀地看到與這篇文章相關的話題的熱度變化。但羅賓解釋道,這個曲線本來是給編輯作為內部參考的,只是初期將它放在了前臺給一個概念。但後來Mashable的讀者都習慣了這個小圖表,甚至在他們取消掉圖表後發出了抗議,所以這個圖表就被保留了下來,成為了Mashable的一個特色。

mashable
Mashable會標示出每篇新聞的熱度表。
圖/ 截圖自mashable

在中國,將人工智慧演算法和新聞編輯結合起來的公司同樣有很多,其中最成功的非《今日頭條》莫屬。羅賓表示,自己並不知道《今日頭條》這家公司,但他很贊同《今日頭條》用機器和演算法輔助人類編輯的做法。但他認為在新聞編輯這件事上,人的作用應該比演算法重要,而機器只能起到輔助作用

「拿Mashable舉例,我們是在這個話題之前收集大量資料進行分析,對這個話題進行預測。這個過程中,我們預測的是人的一些行為。所以我認為我們仍然還是需要人的參與的,我們需要作者和影片製作人員為我們提供有意思的資料,或者說他們來觀看這些資料,來分享這些資料。在這個過程中,可能這些新的分享會給他們帶來一些啟發,給他們帶來一些興奮點,這個過程中他們可以創造更新的東西出來。」羅賓說。

是否擔心過於仰賴演算法造成回聲室?「會盡量做到中立。」

針對演算法和大資料過多的干預編輯是否會造成媒體過於以讀者的興趣為導向,羅賓認為這種情況存在,但最終還是取決於使用工具的人。「你說的這種情況或許在Facebook上是存在的,例如在這次美國大選中,你的資訊流裡幾乎只會出現你支持的觀點,而其他人的觀點是被過濾掉的,我們把這種情況叫做『迴聲室』(echo chamber)。但Mashable是一個面向大量讀者的新媒體,我們認為演算法不能用這種危險的方式來控制人們能夠看到哪些資訊,所以我們會儘量做到中立。」

羅賓認為,人工智慧演算法和大數據能為媒體帶來的最大幫助是效率的提升。「這幾年來媒體公司的日子都不好過了,很多媒體開始大規模裁員。在這種情況下,演算法和資料能夠説明編輯部甄選出值得關注的新聞,並讓他們集中精力在相關領域生產出更深度的新聞,同時也能讓媒體在保持稿件數量的情況下保持品質。」羅賓說。

本文授權轉載自:PingWest

往下滑看下一篇文章
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎

騰雲科技持續展現強勁成長,不僅連續五年維持雙位數的營收增幅,更於 2025 年前三季累計營收來到 5.47 億元、淨利 1.03 億元,年成長率高達 67%,顯示騰雲科技已從智慧零售解決方案供應商擴展成為智慧社區、智慧城市解決方案供應商,並持續發揮高毛利、高成長、以智慧場域資料為核心驅動的代理式 AI 解決方案全方位供應商。

騰雲科技是怎麼辦到的?

騰雲科技董事長暨總經理梁基文不藏私分享兩大關鍵:「首先是以 AI 賦能的產品與服務,協助客戶提升效率、優化營收;其次是透過騰雲孵化器與其生態系中新創夥伴協作,打造零售、不動產、製造與數位保險等產業所需的新商務服務。」

以 AI 賦能全產品線,強化客戶黏著度、深化長期關係

梁基文表示:「AI 不是單一產品或立即變現的技術,要能有效消除資訊不對等,需協助企業先將散落的資料整合成數據資產,才能找出能驅動決策的洞察。」因此,要讓 AI 真正落地,需要同時理解產業現況與營運痛點的夥伴,才能把技術與數據轉化為具體價值,成為企業成長的新引擎。

有鑑於此,騰雲科技的策略是推出 AI Agent 平台 –TrendVotex,由深耕百貨零售、商業不動產等產業的專業團隊協助打造符合場景需求的 AI 代理服務。

例如,為百貨零售打造的「AI 品牌行銷專家」透過市場輿論進行趨勢及同業動態分析、以口碑行銷進行品牌塑造、針對會員數據進行自動化文案生成及傳播、針對行銷成果進行效益分析等自動化決策,「AI 招商助理」則能整合商圈熱度、樓層營運狀態等資訊,提出精準的櫃位調整與招商策略。至於針對複合式商業不動產管理場景推出「AI 能源智慧管理」服務,導入 AIoT 終端裝置佈署並運用其感測數據與歷史異常紀錄,預測設備故障風險,協助排程維修,降低停機時間,大幅提升營運績效。

梁基文補充說明:「除了協助企業打造專屬 AI 代理與串接代理式工作流程(Agentic Workflow),我們也推出 Marketing、Content、Sales、Manufacturing 等跨產業可重複使用的 AI 代理模組,加速零售、不動產、製造、旅遊與數位保險服務等產業的導入腳步。」

值得注意的是,為真正發揮、極大化 AI 價值,騰雲科技不僅提供技術,也協助企業梳理流程、整合分散數據,打造可支撐多場景的數據驅動營運中台。

梁基文表示,不只零售業正加速虛實通路整合,製造與金融服務業也十分重視「全通路數據」,例如製造業需要即時掌握生產過程關鍵數據指標與庫存狀況以確保良率及產能、數位保險業則積極深化對顧客旅程的掌握以完善服務能量等,騰雲科技推出「隨開即用」、雲地整合的 AI 平台,讓企業能在多場景中無縫串接數據並兼顧資訊安全,充分展現「From Insight to Intelligence」價值。

例如,協助數位保險整合顧客的「線上資料(如客戶資料、風險判斷」與「線下數據(如客戶活動數據、場域營運數據)」,透過 AI 進行產品推薦、簡化內部核保作業流程,並提供更加順暢的一致體驗,讓保險也能像零售一樣真正做到懂顧客。

「接下來,我們會把在百貨零售與商業不動產驗證過的技術,進一步擴大到製造、數位保險等產業,讓價值放到最大。」梁基文如是說道。

騰雲科技
騰雲科技董事長暨總經理梁基文
圖/ 數位時代

五大技術、四大產業,騰雲科技以孵化器成就下一個十年

梁基文表示:「過去 10 年,我們專注在『新零售・新生活』;接下來將延伸至『新商務・新生活』,透過收購、合資、投資等方式與外部夥伴共創新的成長動能。」

具體做法是以 ABCDE(AI、Blockchain、Cloud、Data、Experience)五大技術為核心,鎖定零售、不動產、製造與金融服務四大產業,透過外部合作與孵化機制強化解決方案的廣度與深度:整合現場設備、門市裝置、POS、排隊系統、取貨流程、感測器與後勤運作,推出 AIoT 智慧場域管理方案,滿足跨場域、跨產業與跨國企業的需求。

例如,協助泰國五星級酒店導入 AIoT 智慧場域管理方案以優化能源設備管理、降低營運成本並提升使用者體驗等。明(2026)年,騰雲科技計畫將 AIoT 智慧場域管理方案推向製造業廠房,協助客戶管理冷氣、燈光等能源設備並進行碳管理,同時,透過監控產線設備的振動與溫度等數據,提供 AI 預判的設備維修時機(Preventive Maintenance),擴大數位與綠色雙軸轉型的綜效。

除以集團力量推廣 AIoT 智慧場域管理方案,騰雲科技亦積極擴大相應的生態體系發展:首先是與跨業夥伴一同延伸 AIoT 智慧場域管理方案 的應用範疇,如與保險業者合資成立數位保險公司以提供 AI-Ready 數位應用方案;其次是建立消費者生態體系以發揮「新商務‧新生活」的相互影響綜效。例如,騰雲科技子公司騰加數位將擴大 AIoT 平台運營版圖,深入零售、商辦與飯店等多元場景,並以此為載體整合數位支付、會員數據與數位內容傳播等應用,藉此強化場域的智慧化能力,以及拓展騰雲解決方案的落地深度與廣度。

「透過 AIoT 智慧場域管理方案、營運中台與 TrendVotex 等產品與服務,我們不僅能更精準回應台灣、日本與東南亞市場在流程自動化、營運效率提升上的需求,也能同步改善大眾的日常體驗,真正落實『新商務・新生活』的共好價值。」關於未來的發展,梁基文如是總結。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓