專訪Mashable CTO:人工智慧如何幫助媒體編輯提升效率
專訪Mashable CTO:人工智慧如何幫助媒體編輯提升效率
2016.11.16 | 人物

科技媒體Mashable創建於2005年7月,其創始人是當時年僅19歲的蘇格蘭人皮特.卡什莫爾(Pete Cashmore)。在那之前皮特沒有任何媒體工作經驗,網站主要從社群網路上追蹤最受使用者關注的科技公司新聞。到現在,Mashable 在全球的Alexa排名已經達到516名,成為世界上訪問量最多的媒體之一。

Mashable
圖/ Mashable

不走傳統新聞操作,而是根據社群媒體熱門內容挑文章

正是因為Mashable的創始人沒有任何媒體從業經歷,這個科技媒體才沒有從傳統媒體那裡繼承任何過時的新聞操作方式。在Mashable創辦初期,整個團隊20多人每天最重要的工作是在Facebook、Twitter和LinkedIn等社群網路上查看自己關注的大量使用者都在轉發什麼內容,並根據熱門內容撰寫相關的文章。

後來隨著現任CTO羅賓.彼得森(Robyn Peterson)的加入,Mashable開始使用自己開發人工智慧工具來代替團隊每天在社群網路上追蹤內容的工作。羅賓帶領研發團隊設計了一個人工智慧資料分析系統Velocity,透過自然語言理解技術分析社群網路使用者對相關事件的討論,並透過視覺化的圖表向編輯部預測可能會爆發的熱點內容。

開發人工智慧追蹤數據、預測話題熱點

在今年的騰訊網媒體高峰論壇上,羅賓接受了《PingWest品玩》的專訪,並詳細解釋了Velocity系統的工作原理。羅賓表示Velocity會根據社群網路上的分享和討論生成一個熱度曲線,它其實很類似於經濟學中的供求曲線,橫軸代表時間,縱軸代表需求量。相應的,當某一個話題的需求量(熱度)提升時,Mashable就會生產相關的內容進行「供應」。

「舉個例子,透過分析我們預測到接下來一個關於食品比較大的事件有可能是《紐約時報》上所發表的轉基因番茄的故事,現在關於這條新聞的轉發量只有幾十條,但我們的系統可以預測到接下來幾個小時它的轉發量將達到上萬。」羅賓說。

使用自然語言處理等人工智慧技術的基礎是能夠擁有大量資料,Volecity每天能夠分析300萬個不同頁面的連結資料,這些連結包括社群網路貼文、文章、圖片和影片,並從中分析出下一個熱點。

2012年12月,羅賓曾在Mashable上發表了一篇文章稱媒體應該像程式師做產品一樣生產內容。在這篇文章裡,羅賓給了正在衰落的媒體公司四點建議,分別是:社群網路比搜尋引擎更重要、擁抱行動網路、提供個性化的廣告和以產品為主導生產內容

羅賓認為媒體公司的衰落主要在於工程師幾乎不為媒體公司工作來幫助他們創造更好的資料探勘工具,但換句話來說,就是媒體公司根本就不重視工程師和產品經理的作用。但沒有任何傳統媒體基因的Mashable卻利用資料探勘工具和演算法成為了新媒體裡的佼佼者。

Mashable CTO羅賓.彼得森
沒有任何傳統媒體基因的Mashable卻利用資料探勘工具和演算法成為了新媒體裡的佼佼者。

在Mashable的網站上,每篇文章下面都會有一個小小的曲線圖表,讀者可以直觀地看到與這篇文章相關的話題的熱度變化。但羅賓解釋道,這個曲線本來是給編輯作為內部參考的,只是初期將它放在了前臺給一個概念。但後來Mashable的讀者都習慣了這個小圖表,甚至在他們取消掉圖表後發出了抗議,所以這個圖表就被保留了下來,成為了Mashable的一個特色。

mashable
Mashable會標示出每篇新聞的熱度表。
圖/ 截圖自mashable

在中國,將人工智慧演算法和新聞編輯結合起來的公司同樣有很多,其中最成功的非《今日頭條》莫屬。羅賓表示,自己並不知道《今日頭條》這家公司,但他很贊同《今日頭條》用機器和演算法輔助人類編輯的做法。但他認為在新聞編輯這件事上,人的作用應該比演算法重要,而機器只能起到輔助作用

「拿Mashable舉例,我們是在這個話題之前收集大量資料進行分析,對這個話題進行預測。這個過程中,我們預測的是人的一些行為。所以我認為我們仍然還是需要人的參與的,我們需要作者和影片製作人員為我們提供有意思的資料,或者說他們來觀看這些資料,來分享這些資料。在這個過程中,可能這些新的分享會給他們帶來一些啟發,給他們帶來一些興奮點,這個過程中他們可以創造更新的東西出來。」羅賓說。

是否擔心過於仰賴演算法造成回聲室?「會盡量做到中立。」

針對演算法和大資料過多的干預編輯是否會造成媒體過於以讀者的興趣為導向,羅賓認為這種情況存在,但最終還是取決於使用工具的人。「你說的這種情況或許在Facebook上是存在的,例如在這次美國大選中,你的資訊流裡幾乎只會出現你支持的觀點,而其他人的觀點是被過濾掉的,我們把這種情況叫做『迴聲室』(echo chamber)。但Mashable是一個面向大量讀者的新媒體,我們認為演算法不能用這種危險的方式來控制人們能夠看到哪些資訊,所以我們會儘量做到中立。」

羅賓認為,人工智慧演算法和大數據能為媒體帶來的最大幫助是效率的提升。「這幾年來媒體公司的日子都不好過了,很多媒體開始大規模裁員。在這種情況下,演算法和資料能夠説明編輯部甄選出值得關注的新聞,並讓他們集中精力在相關領域生產出更深度的新聞,同時也能讓媒體在保持稿件數量的情況下保持品質。」羅賓說。

本文授權轉載自:PingWest

往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓