今年編輯部來回討論了好幾次科技人進修專題,同仁們都在想,到底怎樣的報導是《數位時代雙週》讀者最需要的?一次又一次的題目會議裡,在資料中,我們掙扎著。
一天,宏達電執行長周永明赴美進修消息突然出現,引發了我們的好奇心,到底什麼課程、什麼原因,讓正逢手機旺季的周永明要離開台灣職場,走一趟哈佛?同時我們也發現,台灣科技界一群老闆們,由張忠謀領軍,正在規劃一趟美國麻省理工學院(MIT)的學習活動。
於是我們決定了,讓資深記者何旭如走一趟美國波士頓,直擊哈佛和MIT現場,帶給讀者最鮮活學習畫面:看台灣叱吒風雲的科技大老們,在聽誰上課?他們會打瞌睡嗎?他們學些什麼?
問題是,到底周永明上什麼課?偌大哈佛校園裡,美麗秋陽下,該如何走訪一間間古老的磚紅教室,找到周永明?
幸好有網路。立即上了哈佛的網站,在公開的課程表裡不斷搜尋著;比對著周永明出發日期和預計回國日期,篩選出最可能的課程。
「一定是這一個!」錯不了,去年製作進修專輯時,工研院院長李鍾熙也上過這課程,講了不少有趣的故事。如果真的沒法找到周永明,哈佛的現場故事永遠也說不完。
帶著忐忑,旭如飛往美國波士頓。她在哈佛和MIT校園裡奔波一星期,真的訪問到周永明的教授、參觀了周永明的教室和宿舍;聽了一場張忠謀在MIT的演講,跟訪到台灣企業老闆的學習團活動。
接著旭如又從波士頓飛往洛杉磯,訪問美國西岸的加州大學洛杉磯分校……,梳理出最新的進修趨勢,帶回滿滿行囊的充電故事。
「離開工作,重新充電,找到下一步動力」,是去年《數位時代雙週》對讀者的忠告;今年除了周永明、張忠謀的充電故事外,網路學習捲土重來,是我們要提醒讀者的另一種選擇。
成千上百的網路課程,免費或收費,只等著有心人來進修。是的,有心人;學習是一種態度,要有足夠的堅持和夢想。
在哈佛和周永明一起上課的執行長們,即使抽身在外念書,也毫不鬆懈,還是會利用唯一的空閒,清晨5點起床慢跑,這是一種堅持,一種信念。面對螢幕,做網路學習時,一個人更需要足夠的自律與永不放棄的決心。
而旭如的這一趟採訪與專題製作,又何嘗不是一種學習、進修之旅?一個人在美國東、西岸的探險與訪問、回國後的資料整理,自律與堅持是支持她完成專題的最後關鍵。
在電動車的感測系統、物聯網中的無電池標籤,以及AI伺服器的高速記憶體修復技術中,都有一個極其微小、幾乎難以用肉眼辨識的元件,默默地發揮關鍵作用。它負責確保系統功能的正確運作,並保護資料的安全性。這個不起眼卻不可或缺的元件,就是「單次可燒錄記憶體」(OTP)。
想像一下,當你坐在自動駕駛的電動車裡,這台移動的智慧裝置正以每小時100公里的速度行駛。它的感測系統、電池管理與安全控制,全仰賴晶片裡的數十億個電晶體協同運作。然而在這些肉眼不可見的微觀世界中,有一個被稱為「功能保險絲」的關鍵元件,如果它的數據在出廠後因高溫或電壓變化而悄悄「跑掉」,將可能在高速行駛下可能造成無法挽回的危險 。
當晶片製程往先進節點發展,傳統OTP技術隨製程微縮而暴露出可靠度與壽命的瓶頸。過去在成熟製程表現穩定的方案,進入7奈米或更先進的製程後,讀取壽命竟從理論上的「無限次」驟降至僅能維持數秒,突顯現有技術難以因應先進製程需求,對需要長期穩定運作的車用與工業應用而言是不可承受的風險。作為矽智財供應商的上峰科技,正是專注於這項關鍵技術的代表之一,其專利OTP技術已被應用於車用電子、物聯網裝置、AI與高可靠性工業設備等多個領域,為全球客戶提供穩定且可持續的解決方案 。「我們的目標是讓OTP在先進製程中一樣可靠,甚至比以前更好。」上峰科技創辦人暨董事長莊建祥開門見山地說。
以電遷移取代爆炸,上峰科技重寫OTP的可靠性
不同於傳統電子熔絲(eFuse)依靠高電流「爆炸式」燒斷導體,或反熔絲(Anti-fuse)以高電壓擊穿氧化層,上峰科技的I-fuse®解決方案採用低於熔斷點的熱輔助電遷移機制。簡單來說,就是用較低的電流與電壓,讓金屬原子在導線內緩慢遷移並改變阻值,而不是粗暴地炸斷它。
莊建祥解釋到,不同於eFuse的「爆炸式」斷裂,I-fuse®的方式更像是一種「緩慢推動」金屬原子的遷移,過程溫和卻能精準改變阻值。因為沒有爆炸,自然就沒有金屬碎屑或自我接回的風險,編程狀態因此能長期保持穩定;而在過程中所需的電壓與電流也遠低於傳統技術,無需高壓電路與內建電荷泵,讓系統設計更簡潔、功耗更低。
他進一步談到,I-fuse®還能在讀取過程中模擬燒錄狀態,所謂的"假燒”,產生類似靜態隨機存取記憶體(Static Random-Access Memory, SRAM)的重複讀寫測試模式,對整個OTP區塊進行全面檢測,確保每一顆出廠的OTP在進入車用或其他高安全性應用之前,都已經通過完整的可靠度驗證,以達成"零缺陷”。過去十多年,I-fuse®已在多種製程節點完成驗證,包括成熟製程與高介電常數金屬閘極(High-k Metal Gate, HKMG)節點。2023年,上峰科技也曾宣布I-fuse®成功在12奈米鰭式場效電晶體(Fin Field-Effect Transistor, FinFET)製程完成矽驗證,不僅延續低成本與設計彈性的優勢,也證明即使在先進製程下,仍能以極小面積支援業界優異的低操作電壓,且無需額外光罩與電荷泵。
不過隨著製程微縮,金屬線寬與高度同步縮小,對爆炸式燒斷的OTP而言是嚴峻挑戰,卻讓 I-fuse®的電遷移機制更得心應手,莊建祥表示當線條越細,越容易在低電壓下完成燒錄,因此上峰科技有足夠的信心能直接從12奈米跨入7奈米,並規劃向3奈米、甚至環繞式閘極(Gate-all-around, GAA)與FinFET架構前進。
計畫助攻跨入7奈米,I-fuse®應用版圖持續擴張
而這次的跨越,正是因為有經濟部產業發展署推動的「驅動國內IC設計業者先進發展補助計畫」(以下簡稱晶創IC補助計畫)協助。莊建祥坦言,對規模不大的IP業者而言,先進製程開發風險高、投入成本大,如果沒有外部資源挹注,很難同時負擔研發與驗證。「晶創IC補助計畫」不僅減輕了資金壓力,更讓上峰科技能集中火力解決7奈米製程的關鍵挑戰,包括更嚴格的設計規範與更密集的繞線限制。
「只要製程允許,我們的技術就能做。」莊建祥強調,I-fuse®採用晶圓廠提供的標準邏輯製程材料,不需改變製程或額外光罩,因此對製程轉換的適應速度遠優於其他OTP技術。「別人可能要花三、四年才能適應新的製程架構,我們幾乎可以無縫切換。」
OTP雖小但其用途極廣。在車用感測器中,它是確保不同零件出廠後能進行精準校正的關鍵;在 AI 伺服器與高速運算晶片裡,它能修補記憶體陣列中損壞的位元,延長晶片壽命;在物聯網無電池的裝置中,I-fuse®以極低讀取電壓(0.4V / 1µW)就能運作,適合能量收集環境。莊建祥更明確指出,I-fuse®未來將持續鎖定Wi-Fi裝置、微控制器單元(Microcontroller Unit, MCU)等對低功耗與高可靠性有高度需求的市場,與現有的車用與工業應用形成互補布局。
在全球晶片供應鏈中,OTP 是與輸入/輸出函式庫(I/O Library)、標準單元庫、靜態隨機存取記憶體編譯器(SRAM Compiler) 並列的「四大基礎 IP」之一,幾乎每顆晶片都需要。掌握這項技術,不僅是產品設計的靈活度,更關乎先進製程的導入速度與成本控制。上峰科技的策略是在穩固現有國際客戶基礎上,藉由「晶創IC補助計畫」加速進入7奈米,並持續向更先進節點前進。透過低功耗、高可靠性的 I-fuse®,讓臺灣有機會在先進製程OTP技術上,取得與國際一線供應商並肩甚至領先的地位。
「我們希望成為各種應用場景中,最可靠、最靈活的OTP解決方案。」 莊建祥說。從成熟製程到 7 奈米,從車用到AI與IoT,這顆小小的OTP正承載著臺灣在先進製程中的另一項關鍵優勢。
|企業小檔案|
- 企業名稱:上峰科技
- 創辦人:莊建祥
- 核心技術:專注於OTP矽智財的研發
- 資本額:新台幣2億元
- 員工數:46人
|驅動國內IC設計業者先進發展補助計畫簡介|
由國科會協調經濟部及相關部會共同合作所提出「晶片驅動臺灣產業創新方案」,目標在於藉由半導體與生成式AI的結合,帶動各行各業的創新應用,並強化臺灣半導體產業的全球競爭力與韌性。在此政策框架下,經濟部產業發展署執行「驅動國內IC設計業者先進發展補助計畫」,以實質政策補助,於113年鼓勵業者往AI、高效能運算、車用或新興應用等高值化領域之「16奈米以下先進製程」或「具國際高度信任之優勢、特殊領域」布局,以避開中國大陸在成熟製程的低價競爭,並提升我國IC設計產業價值與國際競爭力。
