用統計磨練商業Sense!7個超實用觀念,讓你的決策更精準
用統計磨練商業Sense!7個超實用觀念,讓你的決策更精準

統計是一門蒐集、彙整、分析資料的科學,更是企業常用的分析工具。

電子商務網站亞馬遜(Amazon)能在你瀏覽時,推薦你「買了這本書的人也買了這些書」,用的是相關性分析;美國總統歐巴馬(Barack Obama)的競選團隊,知道哪個版面的網站能讓選民增加捐款金額,利用的是隨機對照實驗;市場調查能用少數人的意見推算出整個市場的看法,依據的是抽樣調查的原理。

達特茅斯學院教授查爾斯.惠倫(Charles Wheelan)在《聰明學統計的13又1/2堂課》一書中,列舉出學統計的目的,其中包括:1.分析數據,將資料做出摘要;2.做出更好的決定;3.辨識出能提升做每一件事效果的模式;4.評估政策、計畫與其他創新事項的效用。聽起來是不是很熟悉?彙整數字做出決定、找出做事更有效的方法、評估計畫的效用,這些不就是經理人的工作嗎?

別害怕數學,從統計學的入門版學起,至少,你得知道7個統計觀念,幫助你磨練商業決策的眼光:

1. 次數分配表和直方圖

記錄組別和次數的表格,稱為次數分配圖。利用組別和相對次數的數據製作成長條圖,又稱直方圖,長條之間不會有間隔。

將資料分門別類,然後依照類別分組填入次數(頻率),即為次數分配表(圖表1-1)。再以組別為橫軸,相對次數(或次數)為縱軸,即可將次數分配表「視覺化」,畫出的長條圖稱為直方圖(圖表1-2),可以直接看出樣本的分布。

統計觀念1.PNG
圖/ 經理人118期

次數分配表和直方圖可用來進行ABC分析法,據以研擬商品策略:❶將次數分配表依照營業額的高低重新排列商品順序;❷求取各類商品占整體營業額的比率;❸從營業額最高的商品開始,依序累計各商品的比率(累計比率;圖表1-1最右欄);4在直方圖(圖表1-2);上以累積比率為第二縱軸,製作折線圖(圖表1-3)。

統計觀念2.PNG
圖/ 經理人118期


統計觀念3.PNG
圖/ 經理人118期

根據ABC分析法,累積比率在70%以下的商品歸為A類,70%~90%的歸為B類,其他的歸為C類。從圖表可知,A類的3種麵包(吐司、熱狗麵包、菠蘿麵包)合計約占營業額的七成,應該優先主打A類商品,生產線也要優先生產A類商品。

2.平均數

統計觀念4_平均數.PNG
圖/ 經理人118期

客單價就是消費產業最重視的平均值之一,以「銷售總額÷來客數」。客單價的重要性在於,提高客單價就能在來客數(分母)相同的情況下,拉高營業額(分子)和利潤。百貨公司的周年慶滿千送百、便利商店推出的集點活動,都是為了拉高客單價所進行的促銷活動。

3. 中位數

統計觀念5_中位數.PNG
圖/ 經理人118期

中位數的優點是可以去除極端值的影響。舉例來說,百貨公司新引進了一個超高檔品牌,拉高了整層樓的平均營收,看起來好像整層樓的業績成長,但是如果將各專櫃的營收由小而大排列,從中位數就可知道,大部分品牌的營收其實沒有成長。

4. 眾數

統計觀念6_眾數.PNG
圖/ 經理人118期

平均數、中位數和眾數都是用來描述數據的方法,眾數也不受極端值的影響,最適合用來表達具有「集中」趨勢的數據。比方說,製鞋廠從客戶的銷售資料中發現,銷量最高的鞋子尺碼是23.5號(眾數為23.5,此時計算鞋碼的平均數和中位數都沒有意義),因此鞋廠應該集中資源生產23.5號的鞋。

5. 機率

統計觀念_機率與期望值.PNG
圖/ 經理人118期

機率是用0~1來表示事件的可能發生的程度:0代表不會發生,全部的可能性加起來為1。

以棒球為例,打者的打擊率為三成,表示他有三成機會打出安打,七成機會沒打出安打,而安打加沒有安打的機率應該等於1。擲一次骰子,可能出現1到6點,出現任一點的機會為1/6,全部的可能性加起來等於1。機率適合用來規畫工作進程、預測業務進度,避免做出過於樂觀的判斷。

假定廣告公司內部提案的通過率為七成,通過的案子馬上被客戶接受的機率是五成,這表示每一個提案要獲得公司內部與客戶認可的機率是0.7x0.5=0.35。用機率的方式思考,由於提案成功率只有三成五,所以提案時應該要多準備幾個備案;而提3件案子只通過1件,也都屬於正常情況,用不著氣餒。

6. 期望值

統計觀念_ 機率與期望值2.PNG
圖/ 經理人118期

期望值是機率的應用,將「事件的機率」×「可能得到的報酬」,求得做這件事的期望價值。

假設你擲出骰子幾點就可以得到幾元,那麼擲一次骰子的期望值,就是將所有可能性的期望值算出來相加,也就是1點1元(1/6x1=1/6)加上2點2元(1/6x2=2/6)加3點3元(1/6x3=3/6)加4點4元(1/6x4=4/6)加5點5元(1/6x5=5/6)加6點6元(1/6x6=6/6)的總和3.5元,這表示你擲一次骰子的期望值就是3.5元。

期望值可用來衡量決策,如果某件事的期望值低於做這件事的成本,就沒有做的價值。再以廣告提案為例,假定最終通過客戶審核可賺得100萬元的話,我們可算出提案成功的期望值就是100萬x0.5=50萬,提案在社內通過的期望值則為50萬x0.7=35萬。這表示你最初的提案有35萬元的價值,也表示若提案的成本超過35萬,你也許根本不應該接下案子。

7. 常態分布和標準差

常態分布和標準差 all.jpg
圖/ 經理人118期

常態分布可以用來當作品管的基準點,當工廠正常運作時,如果任意挑出部分產品,平均計算其重量和大小,結果應該會呈現常態分布。如果圖形開始偏離常態分布,就可以推測生產設備可能發生異常,應立即檢查改善。

標準差則是用來表示大多數的資料距離平均值有多遠。當資料呈現常態分布,那麼距離平均值一個標準差的範圍內,應該聚集了68%的資料(如圖),兩個標準差內聚集了95%的資料,三個標準差內包含了99.7%的資料。假如你身高181公分,台灣男性平均身高為172公分,標準差為4公分,表示你的身高大於兩個標準差,算非常高。

同理,當你在挑選運送商品的貨運公司時,如果有兩家公司的平均送達天數都是3天,但是A公司的標準差是0.5天,B公司的標準差是1.5天,這就表示:A公司有68%的機會,會在3±0.5=2.5~3.5天內送達商品,B公司有68%的機會,會在3±1.5=1.5~4.5天內送達。要是你想要商品都在4天內送達,就應該選A公司。

延伸閱讀:

關鍵字: #大數據
往下滑看下一篇文章
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎

騰雲科技持續展現強勁成長,不僅連續五年維持雙位數的營收增幅,更於 2025 年前三季累計營收來到 5.47 億元、淨利 1.03 億元,年成長率高達 67%,顯示騰雲科技已從智慧零售解決方案供應商擴展成為智慧社區、智慧城市解決方案供應商,並持續發揮高毛利、高成長、以智慧場域資料為核心驅動的代理式 AI 解決方案全方位供應商。

騰雲科技是怎麼辦到的?

騰雲科技董事長暨總經理梁基文不藏私分享兩大關鍵:「首先是以 AI 賦能的產品與服務,協助客戶提升效率、優化營收;其次是透過騰雲孵化器與其生態系中新創夥伴協作,打造零售、不動產、製造與數位保險等產業所需的新商務服務。」

以 AI 賦能全產品線,強化客戶黏著度、深化長期關係

梁基文表示:「AI 不是單一產品或立即變現的技術,要能有效消除資訊不對等,需協助企業先將散落的資料整合成數據資產,才能找出能驅動決策的洞察。」因此,要讓 AI 真正落地,需要同時理解產業現況與營運痛點的夥伴,才能把技術與數據轉化為具體價值,成為企業成長的新引擎。

有鑑於此,騰雲科技的策略是推出 AI Agent 平台 –TrendVotex,由深耕百貨零售、商業不動產等產業的專業團隊協助打造符合場景需求的 AI 代理服務。

例如,為百貨零售打造的「AI 品牌行銷專家」透過市場輿論進行趨勢及同業動態分析、以口碑行銷進行品牌塑造、針對會員數據進行自動化文案生成及傳播、針對行銷成果進行效益分析等自動化決策,「AI 招商助理」則能整合商圈熱度、樓層營運狀態等資訊,提出精準的櫃位調整與招商策略。至於針對複合式商業不動產管理場景推出「AI 能源智慧管理」服務,導入 AIoT 終端裝置佈署並運用其感測數據與歷史異常紀錄,預測設備故障風險,協助排程維修,降低停機時間,大幅提升營運績效。

梁基文補充說明:「除了協助企業打造專屬 AI 代理與串接代理式工作流程(Agentic Workflow),我們也推出 Marketing、Content、Sales、Manufacturing 等跨產業可重複使用的 AI 代理模組,加速零售、不動產、製造、旅遊與數位保險服務等產業的導入腳步。」

值得注意的是,為真正發揮、極大化 AI 價值,騰雲科技不僅提供技術,也協助企業梳理流程、整合分散數據,打造可支撐多場景的數據驅動營運中台。

梁基文表示,不只零售業正加速虛實通路整合,製造與金融服務業也十分重視「全通路數據」,例如製造業需要即時掌握生產過程關鍵數據指標與庫存狀況以確保良率及產能、數位保險業則積極深化對顧客旅程的掌握以完善服務能量等,騰雲科技推出「隨開即用」、雲地整合的 AI 平台,讓企業能在多場景中無縫串接數據並兼顧資訊安全,充分展現「From Insight to Intelligence」價值。

例如,協助數位保險整合顧客的「線上資料(如客戶資料、風險判斷」與「線下數據(如客戶活動數據、場域營運數據)」,透過 AI 進行產品推薦、簡化內部核保作業流程,並提供更加順暢的一致體驗,讓保險也能像零售一樣真正做到懂顧客。

「接下來,我們會把在百貨零售與商業不動產驗證過的技術,進一步擴大到製造、數位保險等產業,讓價值放到最大。」梁基文如是說道。

騰雲科技
騰雲科技董事長暨總經理梁基文
圖/ 數位時代

五大技術、四大產業,騰雲科技以孵化器成就下一個十年

梁基文表示:「過去 10 年,我們專注在『新零售・新生活』;接下來將延伸至『新商務・新生活』,透過收購、合資、投資等方式與外部夥伴共創新的成長動能。」

具體做法是以 ABCDE(AI、Blockchain、Cloud、Data、Experience)五大技術為核心,鎖定零售、不動產、製造與金融服務四大產業,透過外部合作與孵化機制強化解決方案的廣度與深度:整合現場設備、門市裝置、POS、排隊系統、取貨流程、感測器與後勤運作,推出 AIoT 智慧場域管理方案,滿足跨場域、跨產業與跨國企業的需求。

例如,協助泰國五星級酒店導入 AIoT 智慧場域管理方案以優化能源設備管理、降低營運成本並提升使用者體驗等。明(2026)年,騰雲科技計畫將 AIoT 智慧場域管理方案推向製造業廠房,協助客戶管理冷氣、燈光等能源設備並進行碳管理,同時,透過監控產線設備的振動與溫度等數據,提供 AI 預判的設備維修時機(Preventive Maintenance),擴大數位與綠色雙軸轉型的綜效。

除以集團力量推廣 AIoT 智慧場域管理方案,騰雲科技亦積極擴大相應的生態體系發展:首先是與跨業夥伴一同延伸 AIoT 智慧場域管理方案 的應用範疇,如與保險業者合資成立數位保險公司以提供 AI-Ready 數位應用方案;其次是建立消費者生態體系以發揮「新商務‧新生活」的相互影響綜效。例如,騰雲科技子公司騰加數位將擴大 AIoT 平台運營版圖,深入零售、商辦與飯店等多元場景,並以此為載體整合數位支付、會員數據與數位內容傳播等應用,藉此強化場域的智慧化能力,以及拓展騰雲解決方案的落地深度與廣度。

「透過 AIoT 智慧場域管理方案、營運中台與 TrendVotex 等產品與服務,我們不僅能更精準回應台灣、日本與東南亞市場在流程自動化、營運效率提升上的需求,也能同步改善大眾的日常體驗,真正落實『新商務・新生活』的共好價值。」關於未來的發展,梁基文如是總結。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓