第三次人工智慧熱潮,能保持持續成長的勢頭,還是有跌入低谷的風險?
第三次人工智慧熱潮,能保持持續成長的勢頭,還是有跌入低谷的風險?

本文摘自:《人工智慧來了》,天下文化出版

2016年3月,似乎人人都在談人工智慧。

AlphaGo與李世乭的一盤棋,將普通人一下子帶入科技最前沿。圍棋人機大戰剛剛塵埃落定,「人類是不是要被機器毀滅了?」之類的話題,就超出科幻迷的圈子,在普通人群中流行開來。每天,我都能在各種場合聽見人們談論人工智慧,哪怕是在街頭的咖啡館裡,也能聽到「深度學習」這樣的專業字眼。

大大小小的人工智慧「論壇」或「年會」,如雨後春筍般在北京、上海、廣州、深圳、杭州等地湧現出來。學術界的人工智慧大師們,在各種會議、商業活動和科普活動中奔波忙碌,馬不停蹄。

一邊是專業的科研機構、高科技公司在談論人工智慧;另一邊,銀行、保險、能源、家電等傳統行業廠商,也都忙不迭地把「AI」或「AI+」的標籤貼在自己身上。至於創投領域,就更是熱火朝天,包括創新工場在內,每家高科技投資機構,都盯緊了人工智慧領域的新創公司。這種火熱場面,和整個投資圈在2016年遇冷的大背景,可說迥然不同。

然而,大家千萬不要忘了,這並不是人機對弈第一次激起公眾的熱情。1997年,IBM深藍戰勝卡斯帕洛夫的那天,全球科技愛好者奔相走告的場景,絲毫不比今天人們對AlphaGo的吹捧遜色多少。再往前看,1962年,IBM的亞瑟.薩繆爾開發的西洋跳棋程式,就戰勝過一位盲人跳棋高 手,那時的報紙也在吹捧人工智慧,公眾也一樣對智慧型機器的未來充滿好奇。

從1960年代、1990年代再到今天,從西洋跳棋、國際象棋,再到圍棋、三盤棋,總共歷經三次人工智慧在公眾中的熱潮。為什麼處在風口浪尖的,偏偏都是人機對弈?為什麼會下棋的電腦程式如此風光?

縱觀人工智慧發展史,人機對弈只是人工智慧在公眾心中地位起起落落的一個縮影。對於人工智慧的技術研發者而言,選擇人機對弈作為演算法的突破口,一方面是因為棋類遊戲代表著一大類典型、有清晰定義和規則、容易評估效果的智慧問題;另一方面,也是因為具備一定複雜性的棋類遊戲,通常會被公眾視為人類智慧的代表,一旦突破了人機對弈演算法,也就意味著突破了公眾對人工智慧這項新技術的接受門檻。

三個時代,三盤人機對弈.png
三個時代,三盤人機對弈
圖/ 天下文化

的確,每次人機大戰及電腦勝出的結果,都在公眾視野中激起萬千波瀾。可是,回過頭來想一想,人類對電腦在棋類專案上勝出的心理承受力,又是何等的脆弱和可笑?跳棋程式甫一成熟,公眾便驚呼「智慧型機器威脅論」,但沒過幾年,習慣了電腦會下簡單棋類的公眾,又會轉而挑釁道:「下個跳棋,有什麼了不起的?有本事去下複雜無比的國際象棋試試?」IBM 深藍剛戰勝卡斯帕洛夫時,全世界關心科技發展的公眾,都在為人類未來的命運擔憂。沒過幾年,國際象棋和中國象棋程式,就變成了再普通不過的電腦應用,在大多數人的心目中,「下個象棋,算什麼智慧?有本事去下奧妙無窮的圍棋試試?」

網上流傳著一幅有關「人工智慧發展成熟度曲線」的插畫,展現出人們在此前兩次人工智慧熱潮中,從被人工智慧在某些領域的驚豔表現震撼,到逐漸認識當時的人工智慧還有各種局限,以至於產生巨大心理落差的有趣過程。

網上流傳的插畫:人工智慧發展成熟度曲線.png
網上流傳的插畫:人工智慧發展成熟度曲線
圖/ 天下文化

與其說這是人類的心理落差,倒不如說,這是電腦是否擁有智慧的判定標準被不斷提升。從會下跳棋就算擁有智慧,到會下象棋才算擁有智慧,再到會下圍棋才算擁有智慧,到底有沒有客觀的評價尺度?到底要給電腦設定怎樣的門檻,才能正式發給它一張具有「人類智慧」的鑒定證書?今天,我們認為AlphaGo是人工智慧了,那麼三年後?五年後呢?

在AlphaGo出現之前,人們至少喊過兩次「人類要被機器毀滅了!」,1960年代前後算一次,1980 年到1990年代前後也算一次。在前兩次的人工智慧熱潮中,每一次都釋放人類關於未來的瑰麗想像力,每一次都讓許多人熱血沸騰。很不幸地,兩次熱潮分別歷經十數年的喧囂之後,無一例外迅速跌入谷底,在漫長寒冬中蟄伏起來。

1998年,我來到北京創立微軟亞洲研究院的時候,正值當時人工智慧的熱潮開始消退,人們對熱潮中隨處可見的盲目情緒心有餘悸,很多人甚至不願再用「人工智慧」這個詞彙,來指代相關的研發領域。在學術圈子裡,一度有很多人覺得,凡是叫「人工智慧」的,都是那些被過分誇大,其實並不管用的技術。結果,我們為微軟亞洲研究院設定科研方向的時候,就經常主動回避「人工智慧」這個字眼,選用「機器視覺」、「自然語言理解」、「語音辨識」、「知識挖掘」之類,側重具體應用領域的術語。

只是因為人工智慧的表現,和普通人的期望存有差距, 我們這些研究人工智慧的人,就羞於提及「人工智慧」,這真是一件尷尬的事。那麼,今天這次的人工智慧熱潮,又會如何發展呢?第三次的人工智慧熱潮,在本質上有何不同? 幾年後的我們,是否還會像前兩次那樣,不但忘卻曾有的興奮,還憤然表示人工智慧都是騙子?學術界、投資界、商業界乃至普羅大眾,還會像此前兩次那樣,在熱鬧一陣子之後,就歸於沉寂,甚至跌落冰點嗎?

今天的人工智慧,是「有用」的人工智慧

我覺得,和前兩次的AI熱潮相比,這一次人工智慧復興的最大特點,就是AI在多個相關領域,表現出可被普通人認可的性能或效率,因此被成熟的商業模式接受,開始在產業界發揮出真正的價值。

從心理學來說,人們接受了一件新事物,就像人們感受到一種外界刺激一樣,是有一個心理閾值的。外界刺激——例如聲、光、電——的強度太小的話,人們根本不會有任何 感覺。只有當外界刺激的強度,超過個人能夠感知的最小刺激量,人們才有「聽到聲音」、「看見東西」之類的明確感受。 這個能夠引起人們感知反應的最小刺激量,在心理學上稱為「絕對閾值」(absolute threshold)。

人工智慧技術的發展正是如此,在此還是以圖像識別為例,在人工智慧發展的早期,如果一個電腦程式宣稱可以識別出圖片中的人臉,但識別準確率只有五成左右,那普通人只會把這個程式看作一個玩具,絕不會認為它擁有智慧。隨著技術進 步,當人臉識別演算法的識別準確率,提高到80%、甚至接近90%的時候,研究者當然知道,儘管取得這樣的進步十分不易,但這種結果其實還是很難被普通人接受,因為每五個人臉就會認錯一個,明顯無法在實際生活中運用。

人們也許會說這個程式挺聰明的,但絕對不會認為這個 程式已經聰明到可以替代人類的眼睛。只有當電腦在人臉識別上的準確率,非常接近、甚至超過普通人的水準,安防系統才會用電腦來取代人類保全,完成身分甄別的工作。也就是說,對於人臉識別這個應用,接近或超過普通人的水準,才是我們關心的「絕對閾值」。

所以,當我們說「人工智慧來了」,其實是說,人工智慧或深度學習真的可以解決實際問題了。在機器視覺、語音辨識、資料探勘、自動駕駛等應用場景,人工智慧接連突破了人們可以接受的心理閾值,而且首次在產業層面「落地」,創造並發揮出真正的價值。

人工智慧之所以能有今天的成就,深度學習技術厥功至偉。谷歌最傑出的工程師傑夫.迪恩(Jeff Dean)曾說:「我認為,在過去五年,最重大的突破應該是對深度學習的使用。這項技術目前已經成功被應用到許許多多的場景中,從語音辨識、圖像識別,再到語言理解。有意思的是,我們目前還沒有看到,有什麼是深度學習做不了的。希望在未來,我們能夠看到更多更有影響力的技術。」

所以,關於第三次人工智慧熱潮,我的看法是:

  • 前兩次人工智慧熱潮是學術研究主導的,這次人工智慧熱潮是現實商業需求主導的。

  • 前兩次人工智慧熱潮多是市場宣傳層面的,這次人工智慧熱潮是商業模式層面的。

  • 前兩次人工智慧熱潮多是學術界在勸說,遊說政府和投資人投錢,這次人工智慧熱潮多是投資人主動向熱點領域的學術專案和創業專案投錢。

  • 前兩次人工智慧熱潮更多是提出問題,這次人工智慧熱潮更多是解決問題。

到底這一次的人工智慧熱潮,是不是處於技術成熟度曲線的成熟上升期,能不能保持長期持續成長的勢頭,是不是會像此前的人工智慧熱潮那樣,有跌入低谷的風險?我想,經過前述分析後,大家應該會有自己的判斷。

往下滑看下一篇文章
健身產業下一個 20 年靠「數據力」:健身工廠攜手 Teradata、擎昊科技,打造智慧經營新典範
健身產業下一個 20 年靠「數據力」:健身工廠攜手 Teradata、擎昊科技,打造智慧經營新典範

在健身產業競爭日益激烈的今天,品牌之間的差距,早已不再取決於場館規模、器材數量或課程內容,而是誰能更貼近會員需求、誰能運用數據看懂會員的一舉一動,打造更精準、更個人化的服務體驗。

對於這一點,台灣第一家掛牌上市、旗下擁有健身工廠等知名品牌的連鎖運動健身龍頭 —— 柏文健康事業,有著比同業更深刻的體悟。過去 20 年,柏文以「持續創新、重視會員需求」為核心,在台灣健身市場站穩腳步。而面對產業全面走向數位化的新競局,柏文選擇攜手 Teradata 與擎昊科技建置企業數據中台,打破內部數據孤島,將分散在各系統的資訊整合為可以被運用的營運智慧。這不只是一次技術升級,更是從「經驗驅動」邁向「數據驅動」的戰略轉型,為柏文在下一個 20 年持續領跑市場注入關鍵動能。

柏文描繪 20 年健身版圖的 2 大關鍵

自 2006 年在高雄成立第一間健身中心「Fitness Factory 健身工廠」以來,柏文的營運規模就穩步成長,如今健身工廠全台已有 83 間分店、會員數逼近 40 萬大關,躍居台灣前二大健身品牌。柏文健康事業董事長陳尚義認為,深耕在地、持續創新,是柏文能在競爭激烈的市場中持續成長的兩大關鍵動能。

擎昊科技
柏文健康事業董事長陳尚義認為,深耕在地、持續創新,是柏文能在競爭激烈的市場中持續成長的兩大關鍵動能。
圖/ 數位時代

第一是深耕在地、理解使用者的真正需求。柏文非常重視會員體驗,在規劃任何服務與課程時,都從在地使用者的實際需求出發。以團課為例,多數健身場館選擇向國外購買課程授權,健身工廠卻決定推出自有團課品牌 FORCE,由專業團隊設計課程且每季推出不同主題,「雖然成本較高、也比較花時間,卻可以確保課程內容更符合台灣人的體能特性與運動需求,」陳尚義認為,這種重視在地需求的思維,正是柏文與會員建立深度連結的關鍵。

第二是持續創新產品與服務。近年來,柏文以「運動休閒」為核心,不斷推出新的品牌與服務。在場館端,成立各具特色的主題運動場館,例如以彈跳床為主的 Crazy Jump 肖跳、射擊對戰遊戲場 KILL ZONE、保齡球館「滾吧 LET'S ROLL」及 Sklub 運動俱樂部。其中,Sklub 青海店為高雄鼓山區首座全齡運動場館,設有室內頂級羽球場、桌球場、國際級楓木籃球場與多樣化運動課程,而 2025 年 11 月開幕的桃園桃鶯店,更是桃園愛好羽毛球人士的首選。

在服務端,則延伸出協助運動後修復的 SPA 個人工房、運動按摩 Buddy Body 等服務。此外,柏文亦與營養師合作推出營養管理與線上課程,近期更籌備成立電商平台,方便會員與非會員選購運動健康相關商品,逐步擴大「運動 x 生活」的服務版圖。

數位化升級:從服務體驗到營運管理全面轉型

伴隨營運規模的不斷成長,柏文也開始導入各種數位工具,以提升會員服務品質與營運管理效率。舉例來說,會員入場的身份辨識機制,已經從早期的刷條碼會員卡,升級到現在的人臉辨識直接進場。又如,在內部營運流程上,從會員管理、財務到行銷活動等,亦全面透過系統來優化作業效率。

這些數位系統累積的大量數據,成為陳尚義日常決策的重要依據。陳尚義分享,自己經常拿起手機查看當日總營收、來店會員數等營運指標,也會比較各場館的營收與來客數變化。一旦發現某館的數據與預期或平常趨勢不符,便會立即請相關人員說明情況,確認異常原因。

「透過數據定位問題,再及時進行分析與改善,才能確保營運狀況維持在最佳狀態。」陳尚義說,更重要的是,這些數據也成為柏文持續創新的基礎,透過數據掌握會員的行為模式和滿意度,如:會員的運動頻率、續約率等,可以作為發展新產品或新服務的決策依據,使其更貼近會員需求。

擎昊科技
柏文健康事業董事長陳尚義指出,透過數據定位問題,再及時進行分析與改善,才能確保營運狀況維持在最佳狀態。
圖/ 數位時代

導入 Teradata 數據中台,柏文邁向即時決策的關鍵一步

然而,隨著數據應用越來越深,現有系統的限制也逐漸浮上檯面。首先,數據散落在 POS、CRM、ERP 等不同系統,無法有效整合,導致使用者必須在眾多介面間來回切換,相當不方便,也容易影響決策的準確性。其次,系統效能不足,在查詢與分析大量數據時,往往要等候一段時間,導致營運報表無法即時產出,管理層難以掌握最新狀況。第三,報表製作流程高度依賴人工作業,需從多個系統匯出資料再自行整合,不僅耗時費力,也容易出現錯誤。

為克服上述挑戰,柏文決定導入 Teradata AIDW 數據平台,將會員資料、IoT 健身設備、POS 交易資料等數據,全面整合至單一資料庫,徹底解決數據孤島的問題。由於 Teradata AIDW 採用 MPP 架構,可以大幅提升資料整理、分析與查詢效能,再搭配帆軟的報表與視覺化工具,使用者可透過儀表板、動態報表或 API 快速掌握分析結果,讓決策過程更即時、更精準。

柏文資訊長黃靜雯表示,選擇 Teradata 的關鍵原因在於其成熟度與穩定性。「Teradata 的效能非常強大,平行運算能力是經過市場驗證的,而且系統本身具備備援機制,不必擔心單一設備故障的風險。」這讓柏文後續能夠更安心地推動大規模的數據與 AI 應用。

擎昊科技
Teradata 的數據顧問不僅具備扎實的技術能力,更累積了豐富的產業經驗,為柏文的數據應用帶來更多啟發與想像空間。(由左至右)柏文健康事業資訊長黃靜雯、柏文健康事業董事長陳尚義和Teradata台灣總經理陳盈竹。
圖/ 數位時代

除了 AIDW 數據平台,Teradata 亦透過數據整理師服務,協助柏文將不同系統、不同格式的資料進行標準化與模型化,為其推動跨系統的數據整合與應用帶來很大的幫助。黃靜雯補充指出,Teradata 的顧問團隊不僅具備扎實的技術能力,更累積了豐富的產業經驗,能從業務視角提出建議,為柏文的數據應用帶來更多啟發與想像空間。

Teradata 台灣總經理陳盈竹則認為,柏文作為健身產業的龍頭,願意率先導入數據中台並積極擁抱 AI 應用,是極具前瞻性的決策。「面對AI浪潮的快速迭代,我認為柏文做了關鍵決策,透過前期約 6 至 10 個月的時間完善數據建設,作為支撐AI發展的核心競爭力!」陳盈竹強調。

擎昊科技
Teradata台灣總經理陳盈竹則認為,柏文作為健身產業的龍頭,願意率先導入數據中台並積極擁抱 AI 應用,是極具前瞻性的決策。
圖/ 數位時代

數據建設就像是城市的下水道工程,是 AI 應用的發展基礎,而作為 Teradata 原廠授權總代理的擎昊科技,則在這座下水道工程中扮演關鍵角色,負責伺服器運算、儲存架構與網路環境建置等任務,「我們結合 Teradata 的技術與自身的整合能力,為柏文打造更穩定的 IT 基礎建設,確保後續的數據分析能在最可靠的環境中運行。」擎昊科技資深協理杜錦祥說。

陳尚義表示,過去許多決策仰賴現場觀察或管理直覺,但未必能量化決策背後的成本與效益;未來希望透過完善的數據中台,不僅能掌握營運脈動,也能將那些過去難以量化的隱形成本具體呈現,進一步評估每項投入是否帶來實質價值。「以數據與人工智慧取代經驗判斷,將會是柏文邁向下一個 20 年的關鍵競爭力。」陳尚義強調。

圖/ 擎昊科技
圖/ Teradata
圖/ 柏文健康事業

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓