[AI洞見]人工智慧、潛水艇與魔術
[AI洞見]人工智慧、潛水艇與魔術

我一直不認為我是人工智慧的專家,但是前陣子跟一些台大資訊工程系的教授們聊天,有位很資深教授突然說,「談到人工智慧,林宜敬是這方面的專家,哪天應該請他來我們系上給個Talk。」

我受寵若驚,一時會不過意來。稍微想了想,才明白過來,原來我們公司的語言學習產品是基於數位語音分析技術的軟體,而數位語音技術一直被許多人認為是人工智慧的重要組成元素。

但我自己不會覺得我們的軟體是個人工智慧產品,因為我對這個產品背後的技術太熟悉了,我知道它能做什麼?不能做什麼?我知道它有什麼缺陷?有什麼潛力?

對於一個我了若指掌的程式,我只覺得它是一個程式,不覺得它有任何的「智慧」。但對不清楚程式運作原理的使用者來說,說不定還真能感受到這程式的「智慧」也說不定!

人工智慧與潛水艇

拜AlphaGo以及AlphaGo Zero 等圍棋軟體之賜,人工智慧議題真是熱門極了,不但有許多年輕軟體工程師投入,也有許多非軟體專業的思想家們開始討論人工智慧對世界的影響(我甚至還看過一篇精神科醫師寫的,介紹AlphaGo演算法的文章。)

早在三十多年前,我在台大資訊工程系讀書的時候,人工智慧就紅過一陣子了。

那時候,社會學家在討論人工智慧對未來社會的衝擊,經濟學家在討論人工智慧會不會造成大量的失業,哲學家在討論人工智慧的道德問題,也有人在討論人工智慧算不算真正的智慧,電腦究竟會不會思考?

最後電腦軟體界的前輩戴克斯特拉(Edsger W. Dijkstra)教授看不下去,出來說話了,他說,「關於電腦會不會思考的這個問題,差不多就跟潛水艇會不會游泳的問題一樣重要。」(The question of whether Machines Can Think is about as relevant as the question of whether Submarines Can Swim.)
此話一出,讓我們這些電腦科學界的人樂壞了。

因為自古以來就是這樣,真正懂的人默默做研究,忙著在尋找科技上的突破;而一些一知半解又愛出風頭的人,總是會搶到話語權,提出一些虛無飄渺,又似是而非的議題迷惑大眾。

那些愛故弄玄虛的人提出一些很哲學性的假議題討論,於是Dijkstra就用很哲學性的話回應。

剛好最近台灣要自己造潛水艇了,不知道半瓶子水的智者們會不會出來討論「台製潛水艇究竟會不會游泳?」

人工智慧與關聯式資料庫

那這一波的人工智慧變革來勢洶洶,就只是一個幻象嗎?

當然不是,這一波人工智慧浪潮的最大意義,是機器學習(Machine Learning)技術的普及化,讓昔日遙不可及又高不可攀的技術,變得人人可上手。

現在的年輕工程師很難想像,在四十年前,關聯式資料庫(Relational Database)也曾是一個充滿想像,但遙不可及的技術。

早在1970年代,IBM的Codd就已經發展出關聯式資料庫所需要的完整數學理論,大家都覺得那個理論很好,但當時的電腦太慢了,任何執行關聯式資料庫的電腦都會慢到像當機。所以那個年代,沒有人把關聯式資料庫應用在商業程式上。

但後來電腦硬體越變越快,到了1990年代,即使個人電腦也能執行關聯式資料庫程式,而SQL語言又讓使用關聯式資料庫的程式變得非常簡單,人人可以上手。

到了今天,使用關聯式資料庫已經變成工程師的基本技能,不是什麼特異功能。

同樣的,在十年前,機器學習也是一個遙不可及的技術。任何機器學習的模型訓練工作都會讓電腦慢到像當機,而撰寫機器學習相關的程式更複雜,除了人工智慧領域裡的高手與高高手之外,一般人無法理解,也無法撰寫。

但是現在GPU被廣泛的使用在機器學習的訓練階段。GPU處理機器學習的速度,是CPU的十倍、百倍甚至千倍,因此在個人電腦上開發機器學習程式已不是問題。

而TensorFlow及Keras等系統,又讓機器學習程式的撰寫變得非常容易。

依照我自己的經驗,安裝並學會Keras跟TensorFlow,然後開始寫一些簡單的影像辨識程式,大概只花了我一至兩個禮拜的時間。而且還是在我一邊上班、一邊找時間學習的狀況下。

要製造一部汽車很難,但是要學會開車不難;要寫一個關聯式資料庫系統或是Keras機器學習平台很難,但是寫SQL資料庫程式或是Keras機器學習程式一點都不難。

所以機器學習技術的普及化,是這一波人工智慧革命的真正意義。說不定十年後,軟體工程師懂機器學習技術,就跟懂關聯式資料庫一樣稀鬆平常,只是基本技能的一種。

人工智慧與變魔術

魔術不是真的魔術,只是變魔術的人讓觀眾產生錯覺,覺得他有魔法、不可思議的事情發生了;人工智慧不是智慧,至少在現在這個階段還是如此,只是開發人工智慧程式的人讓使用者產生錯覺,覺得程式有智慧、不可思議的事情發生了。

以iPhone的Siri做例子吧!幾年前Siri剛發表時,許多人覺得Siri有智慧,因為你問她幾歲?結婚了沒有?願不願意當你的女朋友?Siri都能對答如流,使用Siri的宅男們就覺得Siri是有智慧的。

我不是Siri的開發者,但是我猜,Siri的開發者就是預期會有一些宅男問這樣的蠢問題,所以就開發過程中特意的訓練Siri,讓Siri可以應付宅男們特別愛問的那幾個蠢問題,然後錯覺就產生了,大家就覺得Siri是有智慧的。

但是跟Siri混熟之後,我想很少人還會覺得Siri真正有智慧的。Siri可以幫我們打電話,Siri可以告訴我們問天氣預報,Siri可以幫我們訂Pizza,但是超出一個範圍之外,Siri就只會上Google,找一個網路連結給我們。

為了推廣產品、為了做宣傳,人工智慧的軟體必須做的很炫,然後像是變魔術一樣,讓我們覺得它是有智慧的。

但隨著人工智慧技術的普及,當我們對這些程式越來越熟悉,也許我們就不再覺得人工智慧程式那麼神奇,那麼有智慧了。

也就是說,當我們不再覺得人工智慧程式有智慧的時候,也就是人工智慧真正改變這個世界的時候。

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

關鍵字: #Siri #機器學習
往下滑看下一篇文章
玩手遊也能賺回饋?ShopBack Play 讓你零碎時間也能玩出現金回饋
玩手遊也能賺回饋?ShopBack Play 讓你零碎時間也能玩出現金回饋

通勤、排隊、等餐時,幾乎人人都在滑手機。零碎時間變多、也變得更密集,消費者在社群與影音之間來回切換,也更常打開遊戲。根據資策會 MIC 統計,台灣有 69% 網友會玩數位遊戲,近 8 成每日遊戲時長落在 2 小時內,輕度、碎片化已成主流。

這股趨勢,與 ShopBack 東亞區總經理 Arthur Wan 的觀察不謀而合。「大家在零碎時間裡,經常會拿起手機玩手遊,找個方式殺時間、放鬆心情。」因此,ShopBack 把視角轉向遊戲場景,推出 ShopBack Play,嘗試把娛樂轉化為「好玩、也能賺」的新型回饋體驗,讓回饋不必等到消費發生,日常零碎時間也能累積回饋。

從手遊場景打造現金回饋新模式

Arthur Wan 指出:「ShopBack 在台灣市場落地 8 年了,核心強項始終是電商回饋機制。」然而,若回饋只綁在購物,使用頻率終究受限於消費需求。對此,ShopBack Play 借助手遊的高黏著、高回訪特性,把回饋從交易場景延伸到日常互動;使用者不需消費,只要下載並完成指定任務,就能累積現金回饋,平台也因此更貼近使用者的日常生活。

這也呼應近年全球竄起的「X to Earn」模式。Arthur Wan 解釋,從 Shop to Earn 把消費轉成回饋、Play to Earn 讓玩樂產生回饋,到 Move to Earn 讓移動與運動也具備回饋可能,市場正在探索「參與行為」的價值:「愈來愈多日常行為,其實都能透過特定場景轉化為實際獲益。」

ShopBack Play 的優勢在於回饋可轉移。過往遊戲獎勵多停留在虛擬世界,例如兌換道具;但透過 ShopBack,玩家取得的現金回饋可直接延伸到電商與日常消費,讓娛樂回報更實用、更有感。

SHOPBACK圖說一.jpg
ShopBack 東亞區總經理 Arthur Wan
圖/ 數位時代

引發使用者越玩越賺的回饋循環

ShopBack Play 的使用方式很簡單。在 ShopBack App 首頁進入遊戲專區選定遊戲後,系統即導流至 App Store/Google Play 下載並開玩;玩家只要破關或完成指定里程碑,就能回到 ShopBack 形成「選遊戲→開玩→達標領回饋→再探索」的回訪循環。為了加碼誘因,ShopBack Play 也不定期推出「紅色遊戲專區 2 倍回饋」活動。

Arthur Wan 觀察,「消費者其實並沒有那麼忠誠於某一款特定遊戲。」多數人打開手遊,只是想放鬆、填補空檔,對單一遊戲的黏著度不高。也因此,ShopBack Play 目前合作超過 400 款遊戲,並規劃於 2026 年持續更新合作清單,讓使用者隨時有新選擇可玩。

「我們希望透過遊戲回饋,創造更多回訪的理由。」 Arthur Wan 表示,這也補上 ShopBack 的互動頻率缺口。由於 ShopBack 核心仍以購物回饋為主,熱門品類多集中在旅遊與時尚(如 Booking.com、Trip.com、KKday、Klook,以及 adidas、Nike、GU),消費頻次相對較低;ShopBack Play 則提供更日常、更高頻的回訪動機,讓使用者更常打開 App。

他指出,ShopBack Play 上線後帶動每月回訪 ShopBack 的使用者數成長 15%,整體使用者 CLV(Customer Lifetime Value,顧客終身價值)成長 30%,顯示回饋場景擴張確實見效。且透過遊戲接觸到 ShopBack 的使用者中,也有相當比例會進一步前往平台其他商家消費,形成交叉銷售效應(Cross-sell),推升平台使用深度與消費頻率。

讓回饋生態系融入生活空檔

將回饋帶入用戶生活中的更多片段,讓原本就會經歷的日常時刻變得更有價值,是 ShopBack 持續拓展「行為換回饋」場景的核心思維。對遊戲廠商而言,長期痛點在於下載成本高、留存率偏低,最怕「下載了就走」:數字漂亮,卻沒有實際遊玩行為,轉換與 ROI 難以落地驗證。對此,ShopBack Play 把回饋門檻從「下載」改為「達標」──使用者必須完成指定關卡或里程碑才拿得到回饋,藉此濾掉無效流量,讓導入更貼近真實參與,也更有利於提升轉換率與投資報酬。

對許多用戶而言,遊戲早已是生活的一部分。現在透過 ShopBack Play,不僅能在零碎時間中放鬆娛樂,更能完成任務獲得實質回饋 ,讓「玩遊戲」與「破關」不再只是虛擬成就,而是能實際折抵日常開銷的量化報酬。對 ShopBack 而言,不僅提升用戶在平台內的互動頻率,也補強過去必須透過消費行為才能獲得回饋的單一路徑。透過遊戲機制,用戶即使在非購物場景中也能保持接觸,並於任務完成後自然回流 App,進一步探索購物優惠與合作商家,打造高頻率且正向的使用循環。

也因此,ShopBack Play 推出後的亮眼表現,更進一步驗證這套機制具備高度潛力與市場接受度。據平台統計,功能上線後短短半年內,用戶數成長 12 倍,其中近 60% 為原本的 ShopBack 使用者首次接觸手遊,成功帶動原有會員活躍與新型態行為轉換。除了使用數提升,ShopBack Play 的回饋金發放規模亦快速擴大,自功能上線以來,累計回饋金額已接近 1 億元,展現「遊戲回饋」模式的強勁吸引力與發展性。

隨著 ShopBack Play 與購物回饋、載具回饋機制整合,平台逐步建構出「玩能賺、買能賺、日常生活也能賺」的循環回饋生態系,不僅為用戶帶來更即時、更有感的回饋體驗,也持續深化 ShopBack 在消費日常中的角色。

「ShopBack Play 只是起點。」ShopBack 東亞區總經理 Arthur Wan 認為,當消費者愈來愈精打細算、也更習慣用行為換取回報,未來仍有更多「X to Earn」場景值得探索與開發。「對我們來說,關鍵不只是推出一個新服務,而是持續擴大回饋觸發點,從線上購物、實體場景一路延伸到遊戲入口,串連商家與用戶的日常接觸,讓回饋真正融入生活,讓每一個日常時刻,都更有所得。」

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓