看不見最可怕!三種AI偏見,都是人臉惹的禍
看不見最可怕!三種AI偏見,都是人臉惹的禍

自從蘋果在今年九月推出搭載FaceID的新一代旗艦機iPhone X,「人臉辨識」成為一般大眾熱門討論的話題,不僅在中國出現靠刷臉就能進入的無人商店、台灣Accupass活動通也開發出了可以刷臉觀展的技術,甚至俄羅斯一家人臉辨識新創「VisionLabs」喊出要在15~20年後,讓人臉辨識取代護照查驗。

臉部辨識用於犯罪防治引發歧視問題

雖然人臉技術應用的未來看似多元又方便,但若是應用在涉及人權的犯罪防治工作上,則引發了歧視問題。

2015年,美國佛羅里達州的警方在執行毒品查緝臥底時,暗中拍攝了幾張嫌犯的照片,後來透過臉部辨識軟體搜捕嫌犯,儘管當時許多科技專家認為呈現的結果存有瑕疵,但當局仍逮捕了由軟體辨識出的嫌犯人選,但人臉辨識逮捕嫌犯真得精準嗎?

根據2016年美國喬治城隱私暨技術法律中心公佈的一份調查報告,指出在美國執法機構中,可存取的美國成人人臉辨識資料超過1.17億人,這個數字幾乎是一半的美國成年人都被記錄在資料庫中;同時,美國至少有26州允許執法機構執行人臉辨識搜尋,大約有一半的美國成人因此受到影響,而現階段還沒有針對公民臉部識別數據隱私設立的法律規範,警方不需要任何的證據或理由就可以監控民眾的資料。

這份報告中還提到,臉部識別數據庫會「無意識」的偏向識別黑人,但依據現在的演算法技術,識別黑人的準確度相對較低、較容易出錯,黑人被歸類在「高風險」類別的機率是白人的兩倍,本來應該提供客觀意見的人工智慧(AI)演算法,也如同現行司法系統一樣,並不是完美的生物辨識系統,新技術潛在的偏見,也讓許多民權團體呼籲美國當局應該立法,避免技術被濫用甚至侵犯人權,這樣的狀況讓黑人、少數族群在新的科技時代面臨新的困境。

facial recognition
人臉辨識並不是完美的生物辨識系統,新技術潛在的偏見,也讓許多民權團體呼籲美國當局應該立法,避免技術被濫用甚至侵犯人權。
圖/ shutterstock

AI偏見案例層出不窮,全是人臉惹的禍

不只是臉部辨識系統,過去也曾發生過AI演算法延伸出的偏見問題。

2015年Google Photos 把黑人的照片標籤為「大猩猩」,利用同樣的演算法在 Google Search上搜尋照片,「醫生」通常會跟「白人男性」連結、「護士」會跟「女性」連結,將人類潛意識下對於性別、種族的觀念在搜尋結果中產生連結。

AI不經意的學習人類長期以來的偏見,要徹底解決其實並不容易,微軟紐約研究院資深研究員 Hanna Wallach 曾說:「只要機器學習的程式是透過社會已存在的資料訓練,那麼只要這個社會有偏見,機器學習就會重現這些偏見。」

今年九月,史丹佛大學教授 Michal Kosinski在《性格與社會心理學期刊》發表了一份研究,AI 可以根據臉部照片判斷是同性戀或異性戀,且男性性取向的準確率高達91%、女性準確率則是83%;這項研究在當時影發爭議,許多 LGBT團體紛紛跳出來抗議,認為這類軟體極有可能成為迫害人權的工具。

但研究團隊則認為,是政府的監管以及隱私保護規範未能跟上 AI 的發展,就如同人臉辨識也能用於司法判決參考、學校針對入學學生的智商推論、大型活動入場前暴力威脅的判定,AI、人臉辨識技術、數據含有人類的偏見成分,後果當然令人擔憂,史丹佛大學教授Michal Kosinski強調,這份研究的目的不是要判別誰是同志,而是要大家警惕AI所帶來的影響。

facial recognition
人類則必須時時警惕自己不要讓AI受到人性弱點的影響。
圖/ shutterstock

為什麼AI會模仿人類的偏見?

為什麼走在時代前端的科技技術也會存在著「偏見」呢?麻省理工學院媒體研究室的研究員Joy Buolamwini認為,這是因為許多人臉辨識背後的演算法,都是由白人男性工程師寫的,而演算法要做出好的決策,就必須仰賴過往的資料所累積的經驗,而工程師也許無意識的讓自身的偏見、判斷影響了演算法的運作。

本月於加州登場的「神經訊息處理系統大會」,有一個組織「Black in AI」專門推廣黑人電腦科學家在AI領域研究的成果,致力於促進研究人員之間的合作,提高黑人在AI領域的參與度。不過也引發部分學者跟研究人員的質疑是否有必要舉辦僅關注黑人科學家研究的活動,在過度追求多元化的政治正確下忽略了技術能力。

「這實際上推動AI的隔離,黑人參加為黑人舉辦的活動,女性參加女性活動。」俄羅斯軟體公司SKB Kontur資料科學家Timofey Yarimov說;另外參與活動的一派意見認為,AI領域確實存在對女性和非白人男性的歧視,但如果「Black in AI」組織只是利用特定族群的困境,來吸引群眾參加活動,那麼只會破壞反對歧視的原則,但無論如何,系統背後的科學家缺乏多元組成,某種程度上勢必也會影響演算法的運作。

不過,人類跟機器最大的不同,在於無法擺脫過往經驗在潛意識中產生對於特定事務的偏見,隨著AI、人臉識別成為未來生活的日常,要讓AI保持客觀、中立的判斷,人類則必須時時警惕自己不要讓AI受到人性弱點的影響,說起來容易,但這也成為人類與AI發展之間不能停止努力的功課。

往下滑看下一篇文章
品牌成長的下一步:WPP Open 與 AI 驅動的智慧行銷全攻略
品牌成長的下一步:WPP Open 與 AI 驅動的智慧行銷全攻略

生成式 AI 正在改變人們的生活與工作方式,品牌行銷的運作模式也因此而大幅改變。為因應這波變革,WPP Media(群邑媒體)舉辦「Open for Growth 2030 打開智能行銷時代」論壇,正式宣佈在台推出全新平台 WPP Open,並攜手奧美與 The Trade Desk 兩大合作夥伴,共同探討未來十年的媒體轉型藍圖,協助企業洞察國際趨勢,搶先布局新時代的傳播競爭力。

WPP Open 在台上市,打造 AI 行銷智能引擎

WPP Media(群邑媒體)執行長郭俊鑫表示,AI 已經是行銷流程中不可或缺的一環,但行銷人現在的挑戰不在於「要不要用AI」,而是「如何讓 AI 落地,真正幫助品牌在每一個層面上都能產生成效?」

對此,WPP 集團集結全球的行銷數據、策略與方法論,打造出全新智慧行銷平台 WPP Open,這是一個跨品牌、跨市場、跨媒體的 AI 智能策略引擎,可以讓行銷策略與產出更快、更準、更有影響力。

WPP Media
WPP Media(群邑媒體)執行長郭俊鑫
圖/ WPP Media

WPP Open平台具備三大特色。第一是以 WPP 集團本身所擁有涵蓋 75 個產業的消費者數據庫為基礎,再串接全球超過 350 家合作夥伴的數據庫,透過大量且多元的數據來訓練模型,確保資料安全與精準。第二是以「Private by Default」為設計核心,確保品牌在利用數據的同時仍維持最高隱私標準。第三是內建 Discovery、Plan、Activate、Measure 四大模組,涵蓋媒體行銷的每一個階段,讓品牌主、創意團隊與媒體平台等不同組織,都能在相同平台上一起協作,提高作業效率。

WPP Open如何解決品牌的三大挑戰?

WPP Media策略長金佳諭進一步指出,在科技快速變化、市場競爭激烈的今日,所有品牌主都在面臨三大行銷挑戰:如何找到下一個成長來源?如何在大量且分散的媒體環境中維持精準消費者洞察?又如何在海量數據中看見完整故事?而WPP Open 恰好能協助企業克服這三大挑戰。

首先,透過 Discover 模組可以助力品牌找到下一個成長來源。過去,行銷團隊在解讀客戶需求時,往往會因為溝通方式、經驗或觀點差異,而出現理解落差,而 Discover 模組可分析 Brief 背後的隱藏訊息、提供產業洞察、找出未被看見的成長動能,或是從消費者決策路徑和行為中,判斷品牌真正的競爭優勢,讓團隊從第一步就做出對的決策。

WPP Media
WPP Media策略長金佳諭
圖/ WPP Media

其次,是運用 Plan 模組看見真實受眾,維持精準的消費者洞察。WPP Media 資深總監陳昭伶指出,過去的消費者研究存在許多限制,例如,難以全面理解消費者、人工解讀數據,耗時又費力等,但透過 Plan 模組 4 大功能可以突破限制,快速完成消費者研究。

舉例來說,Audience Insight 可以從不同維度去描繪消費者樣貌,行銷人只要與系統「對話」,就能看到洞察結果,不必再花大量時間進行複雜的資料處理。而Build Persona 則讓行銷人可以看到消費者生活化的樣貌。Focus Group 能夠模擬目標受眾樣貌並回答問題,大幅縮減焦點訪談所需的時間和人力成本。Customer Journey 則能了解不同階段的消費者旅程,「當我們真正理解消費者,就能與他建立更真誠的連結。」陳昭伶說。

WPP Media
WPP Media 資深總監陳昭伶
圖/ WPP Media

第三,是藉由Measure 模組從海量數據中看見完整故事。WPP Media數據與技術團隊負責人戴伯偉表示,WPP Open 以行銷人員為中心,將媒體投放明細、轉換成效、電商/銷售數據、品牌自有資料等內外部數據,匯整在單一平台上,使企業可以做更快速更全面的資料探索。此外,Measure 模組還能根據不同業務需求,客製且彈性的設計報表,讓每個部門都能更直覺地看到最關心的指標。同時還內建 AI 助理:可以自動摘要廣告成效,協助團隊快速發現問題、提出解方。

戴伯偉強調, Measure 模組實現了數據分析自由,滿足任何分析靈感或需求,並且整合跨部門的商業智慧,可以賦能企業與品牌,做出成效最好、效率最高的決策。

WPP Media
WPP Media 數據與技術團隊負責人戴伯偉
圖/ WPP Media

AI 驅動的新世代行銷:從洞察、創意到投放的全面革新

策略人員每天面對不同產業、不同生意與品牌課題,外界常期待我們要「全知」、什麼都懂,而我們自己也渴望靠近全知的能耐。

有了WPP Open加持,策略人員依然需要具備判斷問題的能力與領域思維,但過去大量耗費在蒐集、彙整、比對資料的人工勞動,現在交由擁有龐大資料庫與策略模組的 WPP Open 來處理。在資料的廣度與深度上,比以往更能觸及更完整的世界。

然而,真正的策略答案,從來不是一鍵產生。不論是以終為始,或從始至終,策略的形成仍需辯思往返、推敲求真。WPP Open 協助我們更靠近「全知」,但策略人員的價值,仍在於那段來回思辨的過程,以及從無數可能中找到最真實的解。

WPP Media
奥美整合行銷播集團策略總監宋伊婕
圖/ WPP Media

此外,AI 也能讓行銷素材變得更有創意、更獨特。奧美整合行銷傳播集團執行創意總監蔣依潔分享品牌運用 AI 的行銷創意。例如,有國際飲料品牌以開放平台促成大眾共創;而某家養生飲品則用 AI 創造出虛擬的知己小姐,展現集體女性樣貌中的不同細節;亦有連鎖通路品牌在行銷洗衣精品牌時,運用 AI 生成對髒衣服的想像,從庶民生活中的不完美找到趣味和機會。「創意手法可以不同,但必須與品牌調性一致,這是 AI 生成內容的核心前提。」蔣依潔強調。

WPP Media
奧美整合行銷傳播集團執行創意總監蔣依潔
圖/ WPP Media

在創意產出後,行銷還有最後一哩路,也就是媒體投放。作為 WPP Open 的重要策略夥伴,The Trade Desk(TTD)副總監陳玟潔指出,當品牌透過 WPP Open 完成受眾洞察、策略規劃與創意發想後,真正的挑戰是——如何在龐雜的開放網路中,把廣告「最有效率」投遞給真正的目標受眾。

WPP Media
The Trade Desk(TTD)副總監陳玟潔
圖/ WPP Media

TTD 以跨裝置身份辨識(Unified ID 2.0)、全通路(Omni-channel)、高效演算力與透明數據為核心,讓 WPP Open 所定義的受眾能被精準觸及,並結合 AI技術,協助品牌在投放過程中不斷優化、掌握主導權。她強調:WPP Open 與 TTD 的結合,讓「從洞察到投放」真正串成一條完整、透明、可信賴的 AI 行銷鏈。

在科技快速變化與媒體碎片化的時代,WPP Open 用 AI 串連行銷流程,讓 AI不只是工具,更是推動品牌邁向下一個成長曲線的真正起點。

想了解更多WPP Open AI平台的實際應用,歡迎直接洽詢 WPP Media - Growth & Marketing | MKTG@wppmedia.com

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓