看不見最可怕!三種AI偏見,都是人臉惹的禍
看不見最可怕!三種AI偏見,都是人臉惹的禍

自從蘋果在今年九月推出搭載FaceID的新一代旗艦機iPhone X,「人臉辨識」成為一般大眾熱門討論的話題,不僅在中國出現靠刷臉就能進入的無人商店、台灣Accupass活動通也開發出了可以刷臉觀展的技術,甚至俄羅斯一家人臉辨識新創「VisionLabs」喊出要在15~20年後,讓人臉辨識取代護照查驗。

臉部辨識用於犯罪防治引發歧視問題

雖然人臉技術應用的未來看似多元又方便,但若是應用在涉及人權的犯罪防治工作上,則引發了歧視問題。

2015年,美國佛羅里達州的警方在執行毒品查緝臥底時,暗中拍攝了幾張嫌犯的照片,後來透過臉部辨識軟體搜捕嫌犯,儘管當時許多科技專家認為呈現的結果存有瑕疵,但當局仍逮捕了由軟體辨識出的嫌犯人選,但人臉辨識逮捕嫌犯真得精準嗎?

根據2016年美國喬治城隱私暨技術法律中心公佈的一份調查報告,指出在美國執法機構中,可存取的美國成人人臉辨識資料超過1.17億人,這個數字幾乎是一半的美國成年人都被記錄在資料庫中;同時,美國至少有26州允許執法機構執行人臉辨識搜尋,大約有一半的美國成人因此受到影響,而現階段還沒有針對公民臉部識別數據隱私設立的法律規範,警方不需要任何的證據或理由就可以監控民眾的資料。

這份報告中還提到,臉部識別數據庫會「無意識」的偏向識別黑人,但依據現在的演算法技術,識別黑人的準確度相對較低、較容易出錯,黑人被歸類在「高風險」類別的機率是白人的兩倍,本來應該提供客觀意見的人工智慧(AI)演算法,也如同現行司法系統一樣,並不是完美的生物辨識系統,新技術潛在的偏見,也讓許多民權團體呼籲美國當局應該立法,避免技術被濫用甚至侵犯人權,這樣的狀況讓黑人、少數族群在新的科技時代面臨新的困境。

facial recognition
人臉辨識並不是完美的生物辨識系統,新技術潛在的偏見,也讓許多民權團體呼籲美國當局應該立法,避免技術被濫用甚至侵犯人權。
圖/ shutterstock

AI偏見案例層出不窮,全是人臉惹的禍

不只是臉部辨識系統,過去也曾發生過AI演算法延伸出的偏見問題。

2015年Google Photos 把黑人的照片標籤為「大猩猩」,利用同樣的演算法在 Google Search上搜尋照片,「醫生」通常會跟「白人男性」連結、「護士」會跟「女性」連結,將人類潛意識下對於性別、種族的觀念在搜尋結果中產生連結。

AI不經意的學習人類長期以來的偏見,要徹底解決其實並不容易,微軟紐約研究院資深研究員 Hanna Wallach 曾說:「只要機器學習的程式是透過社會已存在的資料訓練,那麼只要這個社會有偏見,機器學習就會重現這些偏見。」

今年九月,史丹佛大學教授 Michal Kosinski在《性格與社會心理學期刊》發表了一份研究,AI 可以根據臉部照片判斷是同性戀或異性戀,且男性性取向的準確率高達91%、女性準確率則是83%;這項研究在當時影發爭議,許多 LGBT團體紛紛跳出來抗議,認為這類軟體極有可能成為迫害人權的工具。

但研究團隊則認為,是政府的監管以及隱私保護規範未能跟上 AI 的發展,就如同人臉辨識也能用於司法判決參考、學校針對入學學生的智商推論、大型活動入場前暴力威脅的判定,AI、人臉辨識技術、數據含有人類的偏見成分,後果當然令人擔憂,史丹佛大學教授Michal Kosinski強調,這份研究的目的不是要判別誰是同志,而是要大家警惕AI所帶來的影響。

facial recognition
人類則必須時時警惕自己不要讓AI受到人性弱點的影響。
圖/ shutterstock

為什麼AI會模仿人類的偏見?

為什麼走在時代前端的科技技術也會存在著「偏見」呢?麻省理工學院媒體研究室的研究員Joy Buolamwini認為,這是因為許多人臉辨識背後的演算法,都是由白人男性工程師寫的,而演算法要做出好的決策,就必須仰賴過往的資料所累積的經驗,而工程師也許無意識的讓自身的偏見、判斷影響了演算法的運作。

本月於加州登場的「神經訊息處理系統大會」,有一個組織「Black in AI」專門推廣黑人電腦科學家在AI領域研究的成果,致力於促進研究人員之間的合作,提高黑人在AI領域的參與度。不過也引發部分學者跟研究人員的質疑是否有必要舉辦僅關注黑人科學家研究的活動,在過度追求多元化的政治正確下忽略了技術能力。

「這實際上推動AI的隔離,黑人參加為黑人舉辦的活動,女性參加女性活動。」俄羅斯軟體公司SKB Kontur資料科學家Timofey Yarimov說;另外參與活動的一派意見認為,AI領域確實存在對女性和非白人男性的歧視,但如果「Black in AI」組織只是利用特定族群的困境,來吸引群眾參加活動,那麼只會破壞反對歧視的原則,但無論如何,系統背後的科學家缺乏多元組成,某種程度上勢必也會影響演算法的運作。

不過,人類跟機器最大的不同,在於無法擺脫過往經驗在潛意識中產生對於特定事務的偏見,隨著AI、人臉識別成為未來生活的日常,要讓AI保持客觀、中立的判斷,人類則必須時時警惕自己不要讓AI受到人性弱點的影響,說起來容易,但這也成為人類與AI發展之間不能停止努力的功課。

往下滑看下一篇文章
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作

現代人手機不離手,通勤時滑短影音、午休追串流影劇、下午開視訊會議,網路影音應用成為工作與生活的普遍情境。然而,一旦畫面卡頓、畫質不穩,或聲畫不同步,使用體驗立刻打折,甚至影響工作效率與專業判斷。

也因此,網路品質不再只是「快不快」的問題,更關乎能否在高使用量的日常情境下,維持穩定、連續的表現;對此,第三方評測也採用更貼近使用者情境的方式衡量網路體感。而 Opensignal 最新報告指出,台灣大哥大在影音體驗相關項目是業界唯一同時拿下「影音體驗」與「5G 影音體驗」雙項獎項的電信商,其中,關鍵的差異是什麼?

為何「影音體驗」是網路品質的關鍵指標?

愈來愈多消費者入手旗艦機,追求的不只是硬體規格,還有流暢的 AI 應用與多工協作。然而,無論是視訊即時翻譯或雲端會議,這些高階功能都有一個共同前提:網路必須穩定。一旦網路品質不佳導致畫質下降或音畫不同步,旗艦級的 AI 功能將形同虛設。

這也意味著,檢驗網路價值的標準已經改變。如今,不能只看單點測速的瞬間峰值,更重要的是高負載情境下的耐力表現。因此,比起單點測速,影音體驗會是更完整的測試標準,直接挑戰了網路在室內深處、移動途中或人潮聚集時的網路實力;而唯有在長時間串流下依然不卡頓、不降畫質,才稱得上是高品質的連線。

換言之,隱身在硬體背後的電信商,才是發揮旗艦機性能的關鍵;唯有透過最佳網路品質,才能讓手中的旗艦機既是規格領先、也是體驗領先。

唯一影音體驗雙料冠軍,Opensignal 權威認證的有感體驗

雖然相較於測速數據,影音體驗更貼近日常使用,但也更難量化。對此,國際權威認證 Opensignal 的「影音體驗分數」,依循 ITU 國際標準,透過真實用戶裝置在行動網路上進行影音串流的實測數據,觀察不同電信網路在實際使用情境下的表現。

簡單來說,評測聚焦三項核心指標:影片載入時間、播放期間的卡頓率,以及畫質(解析度)是否能穩定維持。使用者從開始播放到持續觀看的整體品質,分數以 0–100 呈現,分數愈高,代表在三項指標的表現愈佳。相較於單點測速,這類評測更能呈現長時間、高使用量下的網路品質。

人流情境不降速.jpg
圖/ 數位時代

而在今年最新公布的 Opensignal 評測中,台灣大哥大獲得「影音體驗」獎項唯一雙料冠軍。其中,「整體影音體驗」為全台獨得第一名,「5G 影音體驗」則與遠傳並列第一。

之所以能在影音體驗拔得頭籌,關鍵在於台灣大哥大目前是全台唯一整合 3.5GHz 頻段 60MHz 與 40MHz、形成 100MHz 總頻寬的電信業者,亦是現階段全台最大 5G 黃金頻寬配置。頻寬愈寬,代表單位時間內可傳輸的資料量愈大;在大量使用者同時進行影音串流、視訊互動的狀態下,更能維持穩定傳輸、減少壅塞發生機率。

台灣大獲權威認證,NRCA技術撐起穩定基礎

除了頻寬帶來的流量優勢,台灣大哥大也採用「NRCA 高低頻整合技術」,也就是透過高低頻協作,讓 3.5GHz 負責高速傳輸、700MHz 補強覆蓋與室內連線,改善室內深處與移動情境的訊號落差,提升連線連續性。

同時,為了讓住家、通勤動線、商圈與觀光熱點等高使用場域維持穩定表現,台灣大哥大已在全台超過213個住宅、觀光及商圈熱點完成 100MHz 布建,提升人流密集區的網路覆蓋率。

5G高速(小).jpg
圖/ dreamstime

值得注意的是,在今年的 Opensignal 評比中,台灣大哥大還拿下了「5G 語音體驗」與「網路可用率」兩項第 1 名,累計獲得 4 項獎項。這意味著不僅具備影音體驗優勢,在語音互動與連線率等關乎用戶日常應用的基礎指標,皆有亮眼成績。

尤其,隨著影音與即時互動成為新世代的工作常態,網路品質的重要性只會持續上升。無論是遠距協作所仰賴的視訊與畫面共享即時同步,內容創作對直播與即時上傳連續性的要求,或是 AI 視訊互動、即時翻譯與會議摘要等新應用,都高度依賴低延遲與穩定的資料傳輸。網路品質因此不再只是連線條件,更是支撐內容生產、協作效率與新應用落地的基礎能力,甚至直接牽動競爭力。

而台灣大哥大經 Opensignal 認證、於多項關鍵指標領先業界,不僅將成為 AI 時代的重要後盾,也讓使用者能更充分發揮高階手機的效能,把「快、穩、滑順」落實在每天的工作與生活中。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓