看不見最可怕!三種AI偏見,都是人臉惹的禍
看不見最可怕!三種AI偏見,都是人臉惹的禍

自從蘋果在今年九月推出搭載FaceID的新一代旗艦機iPhone X,「人臉辨識」成為一般大眾熱門討論的話題,不僅在中國出現靠刷臉就能進入的無人商店、台灣Accupass活動通也開發出了可以刷臉觀展的技術,甚至俄羅斯一家人臉辨識新創「VisionLabs」喊出要在15~20年後,讓人臉辨識取代護照查驗。

臉部辨識用於犯罪防治引發歧視問題

雖然人臉技術應用的未來看似多元又方便,但若是應用在涉及人權的犯罪防治工作上,則引發了歧視問題。

2015年,美國佛羅里達州的警方在執行毒品查緝臥底時,暗中拍攝了幾張嫌犯的照片,後來透過臉部辨識軟體搜捕嫌犯,儘管當時許多科技專家認為呈現的結果存有瑕疵,但當局仍逮捕了由軟體辨識出的嫌犯人選,但人臉辨識逮捕嫌犯真得精準嗎?

根據2016年美國喬治城隱私暨技術法律中心公佈的一份調查報告,指出在美國執法機構中,可存取的美國成人人臉辨識資料超過1.17億人,這個數字幾乎是一半的美國成年人都被記錄在資料庫中;同時,美國至少有26州允許執法機構執行人臉辨識搜尋,大約有一半的美國成人因此受到影響,而現階段還沒有針對公民臉部識別數據隱私設立的法律規範,警方不需要任何的證據或理由就可以監控民眾的資料。

這份報告中還提到,臉部識別數據庫會「無意識」的偏向識別黑人,但依據現在的演算法技術,識別黑人的準確度相對較低、較容易出錯,黑人被歸類在「高風險」類別的機率是白人的兩倍,本來應該提供客觀意見的人工智慧(AI)演算法,也如同現行司法系統一樣,並不是完美的生物辨識系統,新技術潛在的偏見,也讓許多民權團體呼籲美國當局應該立法,避免技術被濫用甚至侵犯人權,這樣的狀況讓黑人、少數族群在新的科技時代面臨新的困境。

facial recognition
人臉辨識並不是完美的生物辨識系統,新技術潛在的偏見,也讓許多民權團體呼籲美國當局應該立法,避免技術被濫用甚至侵犯人權。
圖/ shutterstock

AI偏見案例層出不窮,全是人臉惹的禍

不只是臉部辨識系統,過去也曾發生過AI演算法延伸出的偏見問題。

2015年Google Photos 把黑人的照片標籤為「大猩猩」,利用同樣的演算法在 Google Search上搜尋照片,「醫生」通常會跟「白人男性」連結、「護士」會跟「女性」連結,將人類潛意識下對於性別、種族的觀念在搜尋結果中產生連結。

AI不經意的學習人類長期以來的偏見,要徹底解決其實並不容易,微軟紐約研究院資深研究員 Hanna Wallach 曾說:「只要機器學習的程式是透過社會已存在的資料訓練,那麼只要這個社會有偏見,機器學習就會重現這些偏見。」

今年九月,史丹佛大學教授 Michal Kosinski在《性格與社會心理學期刊》發表了一份研究,AI 可以根據臉部照片判斷是同性戀或異性戀,且男性性取向的準確率高達91%、女性準確率則是83%;這項研究在當時影發爭議,許多 LGBT團體紛紛跳出來抗議,認為這類軟體極有可能成為迫害人權的工具。

但研究團隊則認為,是政府的監管以及隱私保護規範未能跟上 AI 的發展,就如同人臉辨識也能用於司法判決參考、學校針對入學學生的智商推論、大型活動入場前暴力威脅的判定,AI、人臉辨識技術、數據含有人類的偏見成分,後果當然令人擔憂,史丹佛大學教授Michal Kosinski強調,這份研究的目的不是要判別誰是同志,而是要大家警惕AI所帶來的影響。

facial recognition
人類則必須時時警惕自己不要讓AI受到人性弱點的影響。
圖/ shutterstock

為什麼AI會模仿人類的偏見?

為什麼走在時代前端的科技技術也會存在著「偏見」呢?麻省理工學院媒體研究室的研究員Joy Buolamwini認為,這是因為許多人臉辨識背後的演算法,都是由白人男性工程師寫的,而演算法要做出好的決策,就必須仰賴過往的資料所累積的經驗,而工程師也許無意識的讓自身的偏見、判斷影響了演算法的運作。

本月於加州登場的「神經訊息處理系統大會」,有一個組織「Black in AI」專門推廣黑人電腦科學家在AI領域研究的成果,致力於促進研究人員之間的合作,提高黑人在AI領域的參與度。不過也引發部分學者跟研究人員的質疑是否有必要舉辦僅關注黑人科學家研究的活動,在過度追求多元化的政治正確下忽略了技術能力。

「這實際上推動AI的隔離,黑人參加為黑人舉辦的活動,女性參加女性活動。」俄羅斯軟體公司SKB Kontur資料科學家Timofey Yarimov說;另外參與活動的一派意見認為,AI領域確實存在對女性和非白人男性的歧視,但如果「Black in AI」組織只是利用特定族群的困境,來吸引群眾參加活動,那麼只會破壞反對歧視的原則,但無論如何,系統背後的科學家缺乏多元組成,某種程度上勢必也會影響演算法的運作。

不過,人類跟機器最大的不同,在於無法擺脫過往經驗在潛意識中產生對於特定事務的偏見,隨著AI、人臉識別成為未來生活的日常,要讓AI保持客觀、中立的判斷,人類則必須時時警惕自己不要讓AI受到人性弱點的影響,說起來容易,但這也成為人類與AI發展之間不能停止努力的功課。

往下滑看下一篇文章
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?

AI 與數據正快速落地至各行各業,從製造、金融、電信、醫療到零售,應用速度不斷加快。但在每年交易規模至少新台幣 1900 億元的商用地產領域,卻長期受到數據破碎且不透明的限制,只能仰賴人力蒐集資訊,再憑直覺和經驗去解讀資訊、做出決策,使 AI 潛在價值難以真正發揮。為回應產業轉型的核心痛點,方睿科技首度舉辦「商用地產生態系年會 2026 Raise Day」,以開放式平台為核心,串聯專業地產服務商、空間相關企業服務商、產業專業人士等多元角色,勾勒出 B2B 企業服務生態系的全貌,希望能透過科技促進數據流動,為商用地產企業協作模式開啟新的可能性。

方睿科技
方睿科技首度舉辦 2026 Raise Day,以開放式平台為核心串聯多元角色,推動商用地產邁向產業共好的新階段。
圖/ 數位時代

方睿科技雙軌策略,讓 AI 成為商用地產的決策引擎

方睿科技創辦人暨執行長吳健宇指出,在 AI 時代,人應該專注於「最有價值」的工作;然而在商用地產業中,專業人士卻有約 70% 的時間耗費在資料蒐集與整理上,真正用於判斷與決策的時間僅約 10%。方睿科技希望翻轉這樣的時間分配,讓人力從低價值的資料處理中解放,將更多心力投入在判斷、溝通與決策等創造價值的商業活動。

方睿科技
方睿科技創辦人暨執行長 吳健宇
圖/ 數位時代

為此,方睿科技提出兩條實踐路徑。第一條是建構出具備完整性、易用性與進化性的商用地產智慧平台,運用 AI 技術,將過去產業中破碎、非結構化的資料,重塑為可被運算、可驗證的標準化數據,並結合圖表與互動式介面,讓使用者能夠快速得到完整市場資訊,實現「用戶即專家」的目標。

第二條則是推動生態系聯盟,將不動產視為企業服務的核心載體,串聯設計、家具、搬遷、清潔等多元服務夥伴,使空間不再只是靜態標的,而是承載案例、服務與數據回饋的生態系節點。透過生態系夥伴累積的實務資料與服務紀錄,平台得以發展「資料即推薦」模式,推動商用地產從單點交易,邁向可擴張的 B2B 服務網絡。

獨創「資料飛輪」機制,實現用戶即專家目標

在 AI 模型日益普及的當下,真正的競爭關鍵已不在模型本身,而是能否有效率地收集資料、提高資料品質,並將其與實際決策流程緊密結合。為此,方睿科技獨家設計出一個由「資料收集、資料精煉、專家把關、決策反饋」組成的資料飛輪,回應商用地產長期面臨的資料破碎與決策效率低落問題,成為方睿科技實踐願景的第一條路徑。

方睿科技技術長郭彥良進一步說明,資料飛輪機制的運作架構。首先在資料收集階段,必須系統性蒐集公開資料、內部檔案與報告,並透過 AI 協作將圖片等非結構化資訊轉換為可用的結構化數據。接著進入資料精煉,透過資料清洗與實體對齊,將原始資訊從單純的可閱讀升級為可比較、可推論的決策依據。第三步專家把關,則引入不動產專家進行校正與產業判讀,補上模型難以理解的規則與慣例,確保關鍵數據的正確性。最後的決策反饋階段,藉由收集使用者提問與行為,檢視現有資料是否足夠精準,再回到專家校正與補齊流程,使整個系統能隨使用頻率提升而持續進化。

在資料飛輪的運作基礎上,方睿科技正積極研發商用地產智慧平台 PickPeak。郭彥良表示,PickPeak 並非單純的物件搜尋工具,而是結合深度資料與 AI 的決策輔助平台。使用者可透過自然語言互動,提出人數、預算、區位、產業屬性等多重條件,再由系統動態生成可比較、可驗證的選址方案,真正將 AI 從「回答問題的工具」,轉化為「陪伴決策的數位專家」。

方睿科技
方睿科技技術長 郭彥良
圖/ 數位時代

創新 Data to win 模式,讓 AI 深入商用地產各階段決策流程

不過,單靠數據整合與 AI 應用仍不足以支撐產業全面升級,因此,方睿科技提出的第二條路就是,推動產業生態系聯盟,整合商用地產市場上不同角色的數據,讓 AI 能夠真正成為商用地產決策時的智慧引擎。

方睿科技不動產知識創新中心總監曾凡綱指出,目前在企業、房東或物業主與各類服務供應商之間,缺乏有效的整合機制,導致企業在選址與空間規劃過程中,難以快速找到真正合適的服務與解決方案,形成明顯的產業斷點。

為解決這些斷點,方睿科技提出「Data to win」模式,以資料取代傳統「Pay to win(付費買廣告)」思維,讓真正具備經驗與實績的服務夥伴,在適當的決策節點被看見。

曾凡綱說明,在廣告投放效益越來越低的情況下,企業服務商面臨的問題已不只是「如何曝光」,而是「如何在對的地方被看見」,這將是未來的市場勝出指標;而 Data to win 正好可以協助企業服務商建立此能力,方睿科技將生態系夥伴所擁有的案例、服務紀錄與產業知識等資料,經過去識別化與結構化處理後,再嵌入企業決策流程中,讓推薦不再來自廣告投放,而是真實、可被驗證的使用經驗,透過這樣的機制,不僅提升企業決策的準確度,也能同步放大生態系夥伴在合作中的實質價值。

舉例來說,方睿科技整合辦公傢俱夥伴 Backbone 班朋實業長期累積的辦公室規劃案例與平面圖資料,讓企業在選址階段,就能同步評估空間規劃方案,加速決策流程。又如,整合出行服務夥伴 USPACE 悠勢科技的服務資料,並呈現在地圖上,協助企業評估辦公據點的交通便利性,優化員工日常通勤與出行體驗。此外,平台也可整合大樓的 ESG 認證、公共設施與服務層資訊,協助企業快速篩選符合需求的辦公大樓,提升進駐媒合效率。

方睿科技
方睿科技不動產知識創新中心總監 曾凡綱
圖/ 數位時代

「Raise Day 只是這場變革的起點。」吳健宇強調,方睿科技已經透過投資與合夥模式,將布局延伸至專業地產服務與空間經營領域,至今旗下已有商用不動產仲介、顧問與估價等專業服務的宇豐睿星,以及聚焦商用地產代銷市場的希睿創新置業。透過直接參與第一線實務運作,方睿得以更深入理解產業真實痛點,讓科技不只是工具,而能真正回應實際決策與服務需求。

此外,方睿科技未來也將持續擴大「商用地產 x 企業服務生態系」聯盟,目前包括 Backbone、USPACE、IKEA For Business、潔客幫等企業服務夥伴已率先加入;接下來,方睿科技將邀請更多擁有關鍵數據與專業能力的企業服務商加入,讓數據在安全、可控的前提下流動,進一步釋放商用地產在選址、營運與企業服務等全生命週期中的結構性價值,為產業轉型啟動下一個關鍵階段。

方睿科技
右起方睿科技共同創辦人暨營運長陳致瑋、USPACE悠勢科技共同創辦人暨執行長宋捷仁 、Backbone班朋實業創辦人暨執行長廖家葳,透過企業服務生態系合作共同為產業啟動下一個關鍵階段。
圖/ 數位時代

方睿科技官網: https://www.funraise.com.tw

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓