全球最快AI超級電腦Perlmutter啟用,超算系統背後藏6,000多顆NVIDIA GPU
全球最快AI超級電腦Perlmutter啟用,超算系統背後藏6,000多顆NVIDIA GPU

超級電腦再添生力軍!美國國家能源研究科學運算中心(NERSC)於27日正式啟用Perlmutter超級電腦,未來預計每年會有超過7,000名研究人員執行研究計畫,其中包括極大規模的科學研究、新能源開發。NVIDIA也稱,這將是世上最快的AI超級電腦。

Perlmutter超級電腦:背後什麼來頭?

在評估電腦性能上,通常以{{{每秒浮點運算}}}(FLOPS)為衡量指標;而在超級電腦領域,透過百億億級(exascale)運算,可讓科學家能夠在方程式中包含更多的變量,並提高模型的準確性和預測工作,大幅改進科學技術應用。

今日啟用的Perlmutter超級電腦,就提供了近4 exaFLOPS的人工智慧運算效能,是由慧與科技(HPE)、NVIDIA和AMD三方合作打造的GPU加速超級電腦。其採用了多達6,000多個NVIDIA A100 Tensor CORE GPU,是目前為止全球最大的A100 GPU超算系統。

image04
Perlmutter超級電腦
圖/ NERSC官網

Perlmutter超級電腦的命名更是其來有自。當時,柏克萊實驗室的天體物理學家Saul Perlmutter憑藉研究宇宙加速膨脹背後的奧秘,獲得了2011年諾貝爾物理學獎。因此這台超級電腦接下來的應用,最初將會被拿來打造「迄今規模最大的3D立體宇宙地圖」,藉以處理來自暗能量巡天光譜儀(DESI)的資料,探索{{{暗能量}}}對宇宙膨脹的影響;而這台宇宙照相機的厲害之處,就是在一次曝光中可捕捉高達5,000個星系的影像。

Perlmutter
Saul Perlmutter也在28日的虛擬剪綵儀式上現身祝賀。
圖/ NERSC

透過DESI提供的數據,Perlmutter超級電腦將處理並繪製跨越110億光年的可見宇宙圖,讓人類更能了解暗能量。面對極其大量的數據,Perlmutter又將如何做到?

NERSC指出,為了知道每天晚上要將DESI指向何處,研究人員需要評估前一天的資料;而Perlmutter超級電腦中的GPU運算速度,相較於舊有系統,將以20倍的速度處理每晚數十次的曝光資料。有別過往研究人員需花上數周、數月的時間,作業流程可望縮短到數小時。

除了硬體的加持,NVIDIA的AI軟體生態也成為Perlmutter的重要關鍵。NERSC表示,超級電腦採用了NVIDIA HPC SDK,可支援包括OpenMP等熱門程式設計模型;且在GPU上運行資料科學開源碼RAPID,也能加速Python工程師的資料分析速度,相較過往使用CPU快上了600倍。

不只宇宙地圖,更要探索不同科學領域

此外,Perlmultter也將為不同的科學探索帶來幫助,例如為材料科學領域研究原子的交互作用,藉此開發電池與生物燃料、基於原子交互作用的材料科學領域。

NVIDIA表示,以材料科學領域常用的模擬軟體Quantum Espresso來說,傳統超級電腦幾乎無法處理這類程式產生的原子模擬的數學運算,但借助A100 GPU,可加速用於模擬的雙精度浮點數學運算,又能加速深度學習所需的混合精度運算。

1622126740834
NVIDIA指出,AI將是高效能運算的重要推力。
圖/ NVIDIA

NERSC也強調,在精準的模擬與機器學習下,科學家能花更多時間研究原子,使他們得以實現電池介面的原子模擬的大型系統,有助新型態電池與燃料電池的發展。

NVIDIA執行長黃仁勳也在今日稍早的虛擬啟動儀式上,也透過預錄影片線上祝賀:「Perlmutter融合AI與高效能運算的能力,將讓材料科學、量子物理、氣候預測和生物研究等廣泛領域都有突破性的進展。」

在全球面臨新冠狀病毒(COVID-19,俗稱武漢肺炎)影響下,Perlmultter仍依照計畫上線,NERSC表示,團隊也將照顧居家工作的研究人員需求,重新擬定關鍵步驟,像是可透過線上舉辦黑客松,學習如何為exascale等級的應用程式編寫程式碼。

圖三_美國國家能源研究科學運算中心(NERSC)的所在地Shyh Wang Hall
美國國家能源研究科學運算中心(NERSC)的所在地Shyh Wang Hall。
圖/ NVIDIA

責任編輯:蕭閔云

關鍵字: #超級電腦 #AI
往下滑看下一篇文章
決策桌上的虛擬團員:臺大 EiMBA 如何將 AI 從「工具」升級為「共創夥伴」?
決策桌上的虛擬團員:臺大 EiMBA 如何將 AI 從「工具」升級為「共創夥伴」?
2025.12.09 | 創新創業

「過去我們教育教導學生如何從數據中找出標準答案,但在生成式AI的時代,標準答案往往是最廉價的。」臺大EiMBA執行長李家岩一語道破了這波商業典範轉移的核心。他認為,當資訊獲取邊際成本趨近於零,企業的競爭優勢已不再是單純的「掌握資訊」,而是「如何設計讓 AI 與人共同創造價值的流程」。這不只是一句口號,而是一場正在被驅動的轉型。從課程設計的邏輯重組,到學生創業專題的實戰演練,臺大EiMBA正將校園打造成一個允許失敗、快速驗證的「人機共創實驗場」。

告別標準答案,當教授變成「學習架構師」

「我們不再只是教導知識,而是設計學習。」李家岩指出,臺大EiMBA的課程正在經歷結構性的轉變。現在的教授角色更像是一位「學習架構師(Learning Architect)」,他們的任務不是單向輸出,而是設計出高強度的挑戰與情境,讓學生在解決問題的過程中,自然地將 AI 納入決策迴路 。

以今年新開設的「雙軸轉型與人工智慧」課程為例,這並非傳統的技術概論課,而是場關於商業邏輯的壓力測試。學生不再只是繳交一份靜態的商業計畫書,反而被要求運用生成式 AI 輔助設計商業模式畫布(Business Model Canvas),甚至利用Vibe Coding技術讓不懂程式語言的商管學生,也能透過自然語言與提示工程,快速生成互動式的原型與操作介面來模擬市場反應 。這項技術打破了傳統「文組企劃、理組執行」的藩籬,讓創意能即時轉化為可執行的程式碼。在這個過程中,AI 扮演的角色並非代筆的秘書,而是將概念具現化的加速器,以及最嚴厲的邏輯質疑者。

bn圖說女生.jpg
寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕
圖/ 數位時代

「這是我在課程中學到最深刻的一課,」臺大EiMBA二年級生、寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕分享道。身處近200人新創組織的高階主管,她坦言最初員工對 AI 充滿敬畏,甚至恐懼被取代。但在 EiMBA 的課堂上,她發現 AI 真正的價值在於「攻防」與「鏡像」。「老師設計了一種『沙漏式』的提問邏輯,迫使我們把策略餵給AI後,必須面對它無情的反問。」鐘紫瀕回憶,「這個市場假設有數據支持嗎?」、「你的競爭壁壘在哪裡?」這種高強度的追問,都是AI在對學員提出的挑戰,迫使她必須思考得比AI更深、更遠。「以前我們忙著找答案,現在我們學會如何設計出『連 AI 都沒想過的好問題』。AI就像一面鏡子,映照出我們思考邏輯上的盲點。」

數位孿生實戰,將「感覺」轉化為「數據決策」

除了策略層面的思維激盪,AI 在營運端的落地應用,更是讓許多直覺型創業者經歷了一場痛苦卻必要的轉型。臺大EiMBA一年級生、赤赤子設計師林宏諭對此感觸良多。

身處傳統服裝產業,過去他的經營模式多仰賴美感與經驗,「以前做決策就是憑感覺,甚至忙不過來時,連縫扣子這種小事我都自己跳下去做。」但在李家岩講授的「雙軸轉型與人工智慧」課堂上,他被迫面對冰冷的數據與流程,而這正是李家岩強調的「數位孿生(Digital Twin)」素養 。

台大EiMBA圖說一
赤赤子設計師林宏諭
圖/ 數位時代

在虛擬世界中建立一個與真實工廠或商業流程一模一樣的模型,利用AI進行模擬與預測,是現代智慧製造的核心。對林宏諭而言這意味著必須將腦中抽象的「職人經驗」轉化為AI讀得懂的 SOP。「那段過程就像是被老師架著刀子往前走,非常痛苦,」林宏諭形容,為了讓 AI 能協助優化流程,他必須把每一個步驟定義清楚,無法再用「大概」、「憑感覺」含糊帶過 。

雖然煎熬但成果是豐碩的。當感性的創意被裝進理性的數據框架後,林宏諭發現自己的決策不再是賭博,而是可被驗證的科學。「現在AI不僅幫我理清思緒,更像是團隊的外掛大腦。我開始能鼓勵員工使用AI釋放重複性勞動,讓大家能準時下班,去做更有價值的事。」這正是課程希望帶給學員的轉變,從「事必躬親的管理者」進化為「善用工具的跨域系統設計者」。

bn圖說二.jpg
臺大EiMBA執行長李家岩
圖/ 數位時代

跨域共創,打破同溫層的「破壁效應」

如果說AI是另一位虛擬組團員那麼課堂上原本的同學們,就是來自多重宇宙的戰友。這裡匯聚了醫師、網紅、工程師、律師與傳產二代,如此多元的背景在AI的催化下,產生奇妙的化學反應。

李家岩特別提到了榮獲霍特獎(Hult Prize)肯定的「RiiVERSE」團隊。這個由臺大管院 EiMBA 與 GMBA 學生組成的團隊,成員涵蓋了時尚、行銷與創新創業等不同領域。他們利用舊衣回收再製技術,打造出循環經濟的生態圈。「這就是我們強調的跨域共創。」李家岩解釋,在過去,不同領域的專業人士溝通成本極高,但現在,AI成為了通用的翻譯機與黏著劑。

「AI不僅降低了技術門檻,讓文組生也能做Prototype,更讓理組生也能懂得商業敘事。」在這樣的環境下,創新不再是單打獨鬥,而是像RiiVERSE團隊一樣,結合理性與感性,共同回應全球永續(ESG)的艱鉅挑戰。

為了內心的狂熱,動手去做

然而,隨著AI涉入決策越來越深,一個核心問題浮現:在演算法能預測趨勢、生成文案甚至編寫程式的時代,人類領導者的價值還剩下什麼?「我們教的不是被AI取代,而是擴增智慧。」李家岩眼神堅定地說。他強調,未來的領導者必須具備三項關鍵特質:AI素養、跨域系統設計能力,以及科技人文的反思力 。

其中最關鍵的,是懂得界定「自主邊界(Autonomous Boundary)」。領導者必須清楚判斷:哪些決策該放手讓 AI 自動化?哪些時刻必須保留人類的溫度與價值判斷?「例如在智慧工廠中,AI 可以預測機台何時需要維修保養,但『什麼樣的風險可以接受』、『我們要解決什麼社會問題』,這些涉及價值觀的決策,永遠需要人類來定奪。」李家岩補充道 。

bn圖說三.jpg
寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕(左)/臺大EiMBA執行長李家岩(右)
圖/ 數位時代

在李家岩眼中,真正的創新往往不是來自同類型人才的討論,而是從不同背景、不同世界觀的碰撞中誕生。「一個人能看到的只是片段,跨域合作才能讓問題完整。」他再次提到。對他而言,EiMBA 想培養的不是知道最多的人,而是能讓「各種智慧」一起工作的人。在AI與人類智慧並存的年代,領導者最重要的能力,不是掌握所有答案,而是打造一個能讓答案自然生成的組織環境。「未來需要的領導者是能整合技術與人、懂得跨域系統思考、也能『擇人(含機器人)而任勢』的人。」李家岩說,而這群充滿創業創新的管理者也將在未來商業戰場上奏出人機協作的新樂章。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓