三星資深設計師Golden Krishna談UI~最好的介面就是沒有介面
三星資深設計師Golden Krishna談UI~最好的介面就是沒有介面
2013.03.14 | 技能

三星創新實驗室資深設計師Golden Krishna要顛覆大眾對UI(user interface,使用者介面)的想像,日前他出席德州音樂節SXSW發表演說,再度重申對UI的立場:最好的介面就是沒有介面(The best interface is no interface)。他說到,三星消費性電子的未來,會像Nest智慧恆溫器,可以知道你最喜歡的室內溫度,也像賓士車,只要偵測到放在口袋中的鑰匙,即可自動解鎖。

Golden Krishna點出了三點原則:為了要創造更好、更自然的UI,首先要「擁抱自然的過程」,特別是停止再繼續開發複雜的應用程式。以iPhone手機當中的BMW app為例,如果要打開車門,必須經過13個步驟:駕駛要靠近車子、拿出手機、打開手機、滑動解鎖、輸入手機密碼、在眾多app中找出BMW app、按下app圖示、等待app開啟、研究app如何使用、在app功能中找到打開車門的方式、車門打開,最後終於可以打開車門,「只是這樣真是車鑰匙的進化嗎?」他另一隻手拿出賓士車的鑰匙,立刻發出低頻訊號,車門也應聲而開。

第二個原則是「利用電腦,而不是配合電腦」,也就是必須停止讓電腦再有機會告訴我們:「錯誤訊息:你的密碼必須至少有18870個字元,而且不能和你之前設定的30689組密碼重複」,人類要扭轉和電腦之間的關係。打造新科技的同時,更應該考慮用「人類的說法」來建立溝通管道,甚至最好可以具有自動修復功能,就像是固特異研發可自動充氣的輪胎。

第三個原則是「打造一個可適應個人的系統」,例如Nest恆溫器,這款恆溫器最神奇的地方就是可以知道用戶所適應的溫度習慣,於是用戶毋須再使用任何介面,自然而然成為家中的一部分;當我們將這些事情視為理所當然,也就帶來了莫大的技術挑戰。

Golden Krishna認為Google Now服務就是往這方面思索,用戶不再需要過多步驟就可以得到想要的結果,那麼,當全世界走向「自動化解析」的過程,你我是否會因此而變遲鈍呢?答案當然是否定的,至少目前看來是可以多出時間來從事真正想要做的事。

出自The VergeCooper

關鍵字: #UI/UX設計
往下滑看下一篇文章
為何台灣製造業在「智慧製造」卡關?AWS白皮書點出問題,提供實踐最佳解
為何台灣製造業在「智慧製造」卡關?AWS白皮書點出問題,提供實踐最佳解
2025.08.13 |

全球製造業正處於前所未有的挑戰中,從勞動力短缺、供應鏈脆弱,到淨零碳排與數位轉型需求的成長,每一項趨勢都正重新定義產業格局。對此,AWS 發布《全球地緣新局時代下的製造戰略:台灣產業韌性與轉型關鍵策略》白皮書,深入剖析製造業在全球地緣政治與市場變化下的挑戰與機會,提供台灣製造業適合的落地策略與最佳實踐方法。

《全球地緣新局時代下的製造戰略》白皮書限時下載

擔心無法回本、缺乏知識技術,台灣升級「智慧製造」卡關中

台灣製造業在全球供應鏈中扮演重要角色,但同時面臨地緣政治風險、技術門檻高、人才缺口大等多重挑戰。其中在供應鏈韌性方面,壓力更為顯著。根據英國營運持續協會統計,全球近 8 成企業在過去 12 個月曾遭遇供應鏈中斷事件,凸顯全球供應鏈的脆弱,台灣製造業也難以倖免,特別在國際局勢不確定性與在地原料依賴度高的情況下,會進一步放大成本與交期風險。

生成式 AI 應用快速擴展,預計 2025 年台灣企業導入將進入早期大眾階段,並以半導體產業為先導,逐步擴散至其他領域。DIGITIMES 調查顯示,已有 18.1% 的企業採用生成式 AI,並積極用於改善營運效率與產品良率,然而仍有 31.5% 的企業尚未規劃導入,主因包括成本考量、缺乏知識與技術、產業需求不明確,使企業在大規模部署時保持謹慎態度;資誠聯合會計師事務所發布的《2023 臺灣企業轉型現況及需求調查》也顯示,37% 的企業擔心智慧製造投資報酬率過低,30% 缺乏導入知識與技術,27% 不清楚如何實踐,導致智慧製造推動困難。在電子製造業迫切需要專業人才之際,許多產業面臨預算與數據分析能力不足的窘境。

AWS
圖/ AWS

此外,勞動力老化也是台灣製造業的問題。以國發會數據估算,2030 年台灣 50 歲以上就業人口將達 23.8%,導致技術傳承與產線穩定性受衝擊;同時 2050 年淨零碳排目標,迫使製造業必須進行碳盤查與能源優化;加上雖然 9 成企業已啟動數位化,但多數仍停留在營運系統,生產端 IoT 與 AI 應用不足,數據價值未被充分釋放。上述都恐將成台灣製造業升級的阻礙。

全球製造業大變局,智慧製造成關鍵突破口

根據媒體《DIGITIMES》研究,全球智慧製造市場規模將從 2024 年的 3,212 億美元,快速成長至 2033 年的 1 兆 1,583 億美元,年複合成長率高達 13.7%。在社會和全球趨勢的推動下,不只對台灣的製造業帶來新的壓力和挑戰,同時也催生了產業升級需求。

所幸,隨著智慧製造的 4 大技術日益成熟,替台灣製造業帶來更多可能。目前,IoT 透過連接感測器與生產設備,已實現即時監控與資料收集,並支援預測性維護與生產最佳化。世界製造業基金會報告顯示,IoT 已成企業智慧製造的首要投資項目;此外,智慧製造上,AI 現已被廣泛應用於品質檢測、生產流程優化與預測性維護,企業若結合機器學習、深度學習與生成式 AI,即能以數據驅動決策,提升生產靈活性並降低成本。

同時,隨著「數位雙生」的發展,企業可藉其進行「虛擬試錯」與「情境模擬」,在導入新技術前,先模擬其對現有產線的影響,或預測潛在風險與資源耗損,避免浪費;另外,在 AI 大規模應用下,數據隱私、安全風險成為顧慮。「主權 AI」確保企業在可信的基礎架構中進行數據分析與模型訓練,降低數據外流風險,並支援在地資料中心部署,以滿足低延遲、高安全需求。企業若在產業升級中,將智慧製造的 4 大技術整合,即能在自家領域有效推進。

《全球地緣新局時代下的製造戰略》白皮書限時下載

加速轉型關鍵夥伴登場!AWS 台北區域重磅上線

AWS 作為全球雲端運算領導者,深耕台灣市場多年,成為製造業升級「智慧製造」的鑰匙之一,提供全方位資料策略、生成式 AI 創新、敏捷性等多種解決方案,協助製造業突破瓶頸。

過往製造業資料分散在 IoT 裝置、舊設備、資料湖、雲端資料庫與內部系統中,缺乏統一結構與命名規則,也受到組織文化與部門隔閡影響,導致難以擴展或有效利用。藉由「AWS 工業資料經緯」框架,能支援多來源數據關聯與脈絡化,可用於分析、AI 模型訓練與數位應用程式開發,讓資料運用最大化。藉由 AWS 的高性價比基礎設施與豐富合作夥伴網路,企業可大規模部署生成式 AI 應用。

製造業期待透過生成式 AI 來加速產品開發、提升營運效率、優化供應鏈並強化客戶體驗。AWS 提供完整 AI / ML 服務,支援模型建置、訓練、推論與部署全流程,助企業快速、安全落實 AI 應用。企業可將專有資料導入基礎模型,進行微調與最佳化應用。

同時,為協助製造業在全球市場中維持高度韌性與營運敏捷性,AWS 已於 2025 年初在台灣設立全新 AWS 台北區域,涵蓋三個可用區,將使企業能就地處理與儲存必須留存於台灣的資料,確保資料主權與合規性,同時降低延遲、提升應變速度。AWS 預期將在台北投入數十億美元於營運、基礎設施與客戶支持,幫助製造業數位轉型。

立即下載 ➤《全球地緣新局時代下的製造戰略:台灣產業韌性與轉型關鍵策略》
掌握產業趨勢、實戰案例與資安關鍵策略,打造下一階段的製造業競爭優勢!

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓