金屬印模具效率大進化!
金屬印模具效率大進化!
2013.06.25 |

台灣是全球金屬模具市場的第七大國,近年來卻面臨低價競爭,導致產業外移。在金屬製造上,越來越成熟的3D列印技術,將是台灣模具業的轉機!透過特殊水路設計,加快冷卻速度,也提升生產效能,有機會讓台灣模具業更加與眾不同。

在新北市樹林一家不起眼的工廠中,傳出轟隆隆的機器運作聲響,十幾名工人操作著金屬切削銑床,或者以手工調修一塊塊金屬模具,有些用來生產手錶外殼,有的是手機殼。模具完成後,會送到十分鐘車程外的塑膠射出廠進行量產。

這樣的產製流程是台灣製造業的縮影,也是支撐台灣幾十年經濟發展的重要命脈,雖然產值穩定,但少有創新。尤其近年來中國業者削價競爭,也導致產業漸漸外移。不過,****3D****列印技術逐漸成熟,將可成為翻轉模具產業的重要機會。

有人將此稱為第三次工業革命,「但對模具業來說,
3D列印是第二次工業革命,」專業快速模具及模型代工業者、數可科技總經理杜秉明指出,第一次的模具革命在1950年代,美國、日本都開始研發電腦數值控制工具機(Computer Numerical Control,CNC),以電腦程式控制機械切削模具,更加精準快速。台灣則是到1980年代才開始研發、使用。

但不論是傳統方式或CNC,在製作模具時都採「減法概念」,也就是用刀具削切,切、鑽、刨出想要的形狀,然後再以高熱再冷卻的方式,快速成型大量產品。在整個成型過程中,冷卻時間約占40%~90%,一般來說都會利用水或其他冷卻介質,圍繞模具進行循環流動,因此冷卻水路的設計,就成為是否能快速生產、品質穩定的關鍵。然而削切的方式,對傳統模具的冷卻水路設計造成很大的限制。

台灣模具業升級關鍵技術
**
如何讓台灣模具業與眾不同?這就是關鍵技術!**」杜秉明解釋,以金屬3D列印製作的模具是加法思維,不受刀具限制,能做出各種水路設計,就像用黏土捏出的形狀,用打洞機做不出來。數可將水路以螺旋狀分布在靠近模具表層的位置,改善冷卻效率。

這就是模具業的第二次工業革命,從減法到加法,不但生產效率變快、設計彈性變大,還能減少不必要的金屬材料浪費。數可從德國進口的千萬等級金屬列印設備,連麻花捲形狀的模具都能做出來。不過缺點是成本非常高昂,機器要價近3千萬,客戶得花上過去數倍的成本採購新型模具。「這就看企業對於『改變』有多少決心,」杜秉明說。

有效提升產能
未來台灣模具業的競爭力就在這裡,」杜秉明強調,過去中國有辦法削價競爭,主因是它們會抄襲台廠的水路設計,但新式設計將水路埋藏在模具內層,成為本土廠商的獨特知識。只要效率高,就有競爭力,玩具商樂高已經利用異型水路模具提升****25****%產量。

台灣是金屬模具第七大國,雖然這幾年產值仍維持在新台幣
500億元,但產業面臨外移與低價競爭,高階材料與製造設備長期仰賴國外。工研院南分院基層製造與雷射應用中心總監曾文鵬則指出,國內在積層製造模具應用上仍有挑戰,包括缺乏耐高溫、高硬度專屬材料及缺乏整合應用服務。但工研院會扮演整合角色,以3D列印技術為基底,發展國內自主模具製造材料、製程與應用服務,協助模具產業升級。

未來模具產業將走向單一規模、等級更高、極致量產,」長期與模具廠接觸的奇想創造執行長謝榮雅表示,未來的生產方式將走向兩極化:少量多樣、極致量產。部分3D列印機種已能做出商用產品,因此模具產業要避開商用3D列印機能做的事。3D列印出一片外殼可能要20分鐘,但模具機器30秒就能做出一片,一塊模具能生產70萬次。

他建議台灣製造業應朝「模組化」思考,核心模組可用模具大量製造,但客製化的外殼則採3D列印,畢竟模具才適合量產,30秒就能做出60支筆。「誰能妥善搭配兩種製造方式,就能決定未來能否取得優勢,」謝榮雅說。

3D**列印帶來的模具變革
****改變一:模具一體成型,能滿足任何形狀設計
****改變二:改變模具水路設計,冷卻快、效率高
****改變三:減法製造變加法製造,更精確、無廢料

**資料來源《數位時代No.227》

往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓