百度首席科學家吳恩達:不只「機器學習」,更要「模擬人類大腦」
百度首席科學家吳恩達:不只「機器學習」,更要「模擬人類大腦」
2014.06.30 | 技能

一個月前,Coursera的共同創辦人、史丹佛大學人工智慧實驗室的主管 吳恩達〈Andrew Ng〉宣布加入百度 位於矽谷的深度學習研究院(IDL),他說:「我決定將我接下來的這段時間投入到建造更先進的深度學習系統中去。而我認為,百度將是合適的地方。」

上週,吳恩達在加入百度後,首次發表關於深度學習和商業應用的公開演講,在 PingWest舉辦的SYNC 2014舊金山大會 上,他分享了他對下一代深度學習系統的期待,和他將在百度要做的事情。

深度學習並不只是一個學術概念,它是許多現代科技產品背後的「引擎」,作為核心技術支撐著商業上的應用,比如網絡搜尋、機器翻譯、產品推薦和醫學圖像等,帶來了相當可觀的經濟價值。

一些手機裡,也可以看到「深度學習」的基因。比如每部Android手機上的語音識別功能。上周剛剛發行的 Amazon Fire Phone ,其所配備的6個攝影鏡頭和商品推薦等功能,也是基於機器學習和深度學習來實現的。

吳恩達說:「許多你聽過的,像我這樣的傢伙分享的和深度學習有關的演講裡,有兩個概念都會被混淆在一起。今天,我要把這兩個大的概念分開來解釋清楚。」

這兩個大的概念指的是, 在已標記數據上進行的深度學習(也被稱之為在監管下進行的深度學習,supervised learning),和在未標記的數據上進行的深度學習(unsupervised learning)。

吳恩達和他的團隊在史丹佛實驗室做的實驗,可以清楚地解釋這兩者的區別:早前,他們造了一些機器人,試圖讓機器人找出一個辦公空間內的馬克杯。他們跑遍了舊金山灣區,買來所有他們可以買到的馬克杯,並從各個角度給這些杯子都拍了照片,總共獲得了5萬張馬克杯的照片,並將這些照片都展示給這個機器人訓練它。經過這個實驗後,機器人最終可以在一個辦公空間內,找到所有的馬克杯。

「之​​所以深度學習可以奏效,是因為在學習被標記的數據上,它的表現很好。」但Andrew馬上說:「我們發現,這和動物及人類學習的還是不同。我相信,即使是最最深沉地愛著自己孩子的父母,也不會跑遍舊金山灣區,找出5萬個馬克杯的照片指認給自己的孩子看,來讓他認識什麼是馬克杯的。人類和動物的學習方式是,進入環境,由我們自己去感受這個環境並學習。」

「跑遍整個舊金山灣區找出的所有馬克杯照片」就是標記數據,而「進入環境,由自己去感受環境」指的則是在未標記數據中進行的學習。

「深度學習」的研究者們又重新回頭借助神經科學審視人類大腦學習的過程。 他們發現——人類大腦在看到實物的第一個步驟,是尋找實物的邊緣。幸運的是,來自柏克萊的研究者的實驗表明,複製這個人腦處理視覺早期步驟的過程,是可以被模擬神經網絡所實現的,而且這個「神經網絡」不僅對於圖像識別奏效,對於音頻識別也可以產生相同的結果。 現在,吳恩達和他的團隊正在對這一部分的「深度學習算法」進行解析。

從非標記數據中學習——這是現在讓吳恩達感到非常興奮的點,因為這能讓深度學習普及到更多的應用領域,他解釋說:「因為對於許多應用方向而言,我們沒有那麼多標記數據。其二,這更接近人類學習的過程。」

但要完成這部分的工作,單靠學校或是研究機構很難實現,必須要藉助外部的力量,因為所有的實驗結果都指向了這樣一個趨勢: 模擬出的神經系統越大,實驗效果越好。 2010年,吳恩達加入Google,照他自己的話說,「我上下求索,到處去找誰有最多的電腦、並且還願意讓我使用的?」Google幫助吳恩達開發出了擁有十億個連接單元的「深度學習」系統,吳恩達說:「有了Google我才能造出比原先大百倍的系統。」他所帶來的研究成果也幫助Google開發出了不少商業產品。

但這些算法的應用範圍仍然十分局限,只有像Google這樣的科技巨頭,才擁有這樣的資源,進而擁有這樣的技術。創業公司或者是普通研究學者,並沒有機會在這麼大的模擬神經網絡上,去試驗自己的想法和算法。

「我們真正感興趣的是,如何讓深度學習更加的民主化?」Andrew說。對此,他和他的學生Adam Coates決定用GPU替代CPU,降低造價——GPU是Graphics Processing Unit的縮寫,是用來進行視覺圖像處理的,在每個人的電腦裡都有。

但今天的人工智慧,仍然是一個對資本要求很高的生意,而只有像Google、Baidu這樣以搜索起家的公司,才能提供盡可能多的實驗數據和計算力——這是他選擇加入百度的一個原因。

吳恩達說:「這有點悲哀。你需要大量的數據和電腦,幸運的是,百度有這些東西。其次,百度是一個敏捷的機構,能快速地調配資源去需要的地方。同時,我被我所遇到的人所折服,比如百度美國的總經理Alex Cheng,我的好朋友余凱和張潼,他們多麼的友好、聰明、努力和謙遜。他們願意讓我加入他們和他們合作,我覺得這是我的榮幸。」

加入百度後,現在吳恩達正在著手為下一代的「深度學習系統」搭建基礎設施和準備工具——這也是他讓深度學習民主化的重要一步,他要讓在該領域做研究和想要應用深度學習概念的人們,有一個可使用的系統測試自己的點子。他說:「 我知道下一代的百度深度學習系統不會來自於我個人, 我們現在在建造為下一代深度學習系統而準備的工具和基礎設施,來讓研究人員和我們合作,測試點子和進行學習。 我想做的是,建立起來基礎設施,讓別人來和我們合作,讓他們成為下一代深度學習領域內的英雄。

出自 Pingwest

關鍵字: #百度 #人工智慧
往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓