[官振萱]媒體轉型不能靠直覺,那麼你依賴的是什麼?
[官振萱]媒體轉型不能靠直覺,那麼你依賴的是什麼?
2016.03.06 | 人物

圖說明

如今,每一家媒體都面臨著挑戰,對於傳統媒體而言更是。轉型不能靠直覺,那麼你依賴的是什麼?數據嗎?你能誠實面對這些檢視嗎?

談了許多傳統媒體轉型數位的方向、困難與方法後,今天邀請兩位同仁現身說法:如何轉型成功。兩位都在純平面工作超過十年,如今成功移民數位世界。

通常我觀察同仁是否「轉過去」的關鍵,第一,是否有把負責的數位載具「使用者」放在心中。還沒有轉過去的人,會習慣性想到什麼內容就悶頭做,做完之後才發現「大腳裝不進小鞋」,不合身。相反的,轉過去的人,會先停一下、想一下,我的使用者會想看什麼呢?要怎麼說這個故事,讓使用者最能消化吸收呢?

第二,是否能借重數字分析,客觀了解自己的使用者,不是靠直覺。數位最大優點就是能用數字檢驗自己的假設,誠實面對數字才是尊重使用者。第三,用最準確的方式說故事。該長、該短、該不該用文字表達、該不該用照片、該不該用影片……,做到「準確」服務使用者而非華麗取勝。

以下兩位同事,我認為「轉過去」了。我請教他們幾個問題:

  1. 最難的是什麼?
  2. 突破的轉捩點是什麼?
  3. 接下來想突破什麼?
  4. 覺得傳統媒體工作者最容易卡在哪裡?

給點建議。以下是他們的回答。

毫不含糊檢視我和讀者的關係

F小姐(工作超過20年,翻譯超過20本書,做過雜誌、出版編輯、報紙國際新聞編譯,現在是單位裡的「社群女王」,讓報社粉絲團起死回生)

數位轉型,最困難的是一開始心理上的恐懼,改變領域,還要接受別人檢視。所以要接受自己「不夠好」,這麼晚才開始學習數位,心理上會矮人一截,如果始終在傳統媒體的軌道上工作,習慣大家的肯定,我不用直接面對這些。

最大的突破是開始明確檢視「我和讀者的關係」。每次討論題目妳都會問:這和使用者有什麼關係?以前在報紙編譯國際新聞時不需要回答這個問題,我們覺得重要的,它就重要。現在要重新檢視我覺得重要的,是不是讀者覺得重要的。最有幫助的訓練就是數字分析,迅速、明確、毫不含糊的檢視自己對讀者的判斷是否正確。

一年來的轉型訓練,很多項目都鍛鍊過,但淺嘗即止,接下來我想要自己找一個項目,花時間去累積紮實的實力。目前想要選的是社群短影音,包括題材判斷、剪接、下標、讓它在社群發酵。

傳統媒體的同事,多半實力好、見識高,不容許自己做出幼稚、不完整、實驗性的東西,寧願守在原地。如果組織不調整,沒有立刻否認他們的價值,就會覺得原來的方式仍是很好的,導致自己改變的腳步鬆懈。

丟在全數位的環境裡成長最快

L先生(當過兩年編輯,八年記者,目前為新聞部數位製作人)

最初踏入數位覺得技術門檻很高。以前做記者只要會搜尋資料,連雲端硬碟也不會用,現在很多數位產製的工具都要會。接著是觀念的問題,過去寫新聞沒有TA(目標使用者)的觀念,記者通常目標是「上到報紙頭版頭」,因為代表長官肯定你。但沒有想過,服務的對象到底是報社的長官,還是讀者?

進入數位世界是很殘酷的,因為什麼都有數字可以佐證,記者的優越感消失,常常自以為了不起的作品瀏覽率卻非常低,會很受挫,自己拉不下臉來。

不過,挫折中還是可以找到小小的成就感。比如一個作品,意外得到很大的回響,數位時代沒有絕對的法則,新鮮的事很多,也是數位環境最好玩的地方。就是這樣度過挫折,然後不斷往下找新的目標,嘗試對準使用者。

所以學習數字分析是很有用的。另外,和不同數位專長的同事合作,比如視覺設計、產品開發等,慢慢將數位的知識和能力累積起來,養成用數位來思考,整個人被丟在全數位的環境裡成長是最快的。未來,我想花更多心力投入「短、精、快的視覺化數據新聞」,協助年輕同事,結合新聞專業與數位經驗。

不過感覺上目前很多人還是沉浸在自己的舒適圈裡,習慣長期以來的工作模式。其實就放膽踏進數位的領域,甚至全數位的領域,一段時間後即便回到原工作崗位,也會很不一樣。

@@BOOKID:126688@@

往下滑看下一篇文章
以晶片的一瓦算力開啟AI新架構!耐能智慧從邊緣到核心,打造臺灣主權算力新典範
以晶片的一瓦算力開啟AI新架構!耐能智慧從邊緣到核心,打造臺灣主權算力新典範

當全球聚光燈都匯集在那動輒使用上萬顆圖形處理器(Graphics Processing Unit, GPU)、耗能堪比核電廠的資料中心時,另一場關乎AI永續發展的運算革命正悄悄發生。這場革命的核心,是如何以更低能耗、更高效率的方式支撐下一世代的人工智慧。而耐能智慧(Kneron)正是這場轉變的推動者之一。

早在2015年,當多數企業仍沉浸在雲端運算帶來的紅利時,耐能智慧創辦人暨執行長劉峻誠便選擇了「邊緣運算」之路的賽道,投入AI系統單晶片(System-on-Chip, SoC)與神經網路處理器(Neural Processing Unit, NPU)的開發。「如果 GPU 是需要龐大設備才能運行的錄影帶,中央處理器(Central Processing Unit, CPU)是性能平庸的 影音光碟(Video Compact Disc, VCD),那麼 NPU 就是能在輕薄裝置中高效運算的 MP3。」劉峻誠用一個簡單的譬喻如此描述著,這不只是晶片製程的改進,而是從架構層重新定義AI運算的方式。

十年磨一劍,如今耐能智慧的NPU晶片已成功進入物聯網、安防、車用與伺服器等不同領域。從智慧水表、穿戴裝置到車用語音系統,乃至企業伺服器與工業應用,都能在有限功耗下執行即時AI運算。合作夥伴從國內上市櫃企業到歐美等地的國際大型企業,都能看見耐能智慧身影,「我們從GPU、CPU進不去的地方出發,讓晶片像樂高積木一樣,從只需一顆晶片的穿戴式裝置,到需要多顆晶片的伺服器,都能使用我們的晶片。」劉峻誠說。

面對算力與能源雙重瓶頸,耐能智慧以新架構迎戰生成式AI時代

面對終端AI應用面臨的「資料流衝突」瓶頸,耐能智慧創辦人暨執行長劉峻誠指出,新世代AI運算不再只屬於
面對終端AI應用面臨的「資料流衝突」瓶頸,耐能智慧創辦人暨執行長劉峻誠指出,新世代AI運算不再只屬於雲端,必須開發能兼容多模態資料並在低功耗環境下運行的自主架構。
圖/ 數位時代

「語言模型和影像模型的資料處理方式完全不同,」劉峻誠解釋到,語言模型要短時間內處理大量資料,但影像模型則需要長時間、連續的低流量傳輸。而傳統AI架構無法同時兼容這兩種特性,這造成了終端AI應用面臨「資料流衝突」的瓶頸。也正是在這樣的挑戰下,成為耐能智慧下一階段的技術突破口。生成式AI不再只屬於雲端,運算正快速轉移至終端,從智慧家庭到醫療、車用、製造現場,都迫切需要能在低功耗環境下即時運行的AI系統。

但更大的壓力來自能源現實與國家安全。劉峻誠表示,GPU架構的能耗與散熱需求驚人,一個大型AI資料中心每年電費可高達60億美元,碳排放量更是巨獸等級。「如果繼續用GPU支撐生成式AI,將會對淨零碳排的目標帶來嚴重衝擊。」劉峻誠坦言並進一步指出,臺灣雖是全球GPU製造重鎮,但本地可用算力有限。「我們製造了全世界近8成的GPU,卻沒有自己的算力,」他語帶無奈,「如果國家級AI應用仍須仰賴境外基礎設施,國家的核心技術與自主權將受制於人,不利於在AI時代掌握主導地位。」

因應這場可能產生的算力主權的危機,耐能智慧決定以「多模態資料流衝突」與「低碳永續算力」這兩項挑戰為目標,開發新世代AI晶片架構。為加速這場技術革命並將臺灣的自主架構推向國際,耐能智慧投入全新晶片KL1140的開發,並成功得到由經濟部產業發展署推動的「驅動國內IC設計業者先進發展補助計畫」(以下簡稱晶創IC補助計畫)的支持。該計畫在國科會協調與經濟部及相關部會共同合作所提出「晶片驅動臺灣產業創新方案」的框架下,以實質政策補助鼓勵業者布局AI、高效能運算或新興應用等高值化領域的關鍵技術,提升臺灣IC設計產業的國際競爭力與韌性。

從晶片創新到主權AI,晶創IC補助計畫助攻耐能跨入新戰場

耐能智慧透過經濟部「晶創 IC 補助計畫」加速開發的 AI 晶片 KL1140,其效能與能耗表現均顯
耐能智慧透過經濟部「晶創 IC 補助計畫」加速開發的 AI 晶片 KL1140,其效能與能耗表現均顯著提升。
圖/ 數位時代

「KL1140最大的突破在於多模態資料處理架構的創新。」劉峻誠直言其中關鍵。在晶創IC補助計畫的挹注下,耐能智慧得以加速開發新一代晶片,這不僅是十年研發累積的成果,更是政策資源與技術創新的結合,象徵著臺灣在AI架構自主化道路上的重要里程碑。

這項架構革新,使KL1140在效能與能效上都達到顯著飛躍。相較於前一代產品,效能提升6至8倍、能耗比提升10倍、體積縮小至四分之一;以往需10瓦才能運行的任務,現在僅需1瓦即可完成。「你看GPU要加風扇、要水冷,而我們不用,」他笑著說,而這就是低功耗的力量。

這樣的設計,使KL1140成為真正能落地的AI晶片,既可部署於穿戴、車用與工業場域,也能堆疊成伺服器模組,實現了靈活的異構運算(Heterogeneous Computing)基礎建設。透過晶創IC補助計畫的協助,耐能智慧不僅強化晶片設計,更能整合模組、子系統與軟體生態,打造可供企業與政府使用的在地AI解決方案,邁向「AI基礎建設提供者」的新定位。劉峻誠也透露,目前KL1140晶片已開始導入國際主權AI專案,協助能源與環境條件嚴苛的地區,利用該晶片低功耗與高算力的特性,順利發展AI自主。

「我們不是在打造更大的GPU,而是在打造更聰明的AI,」劉峻誠強調。「主權AI的關鍵不只是算力自主,更是能源自主。」他認為,晶創IC補助計畫的核心價值在於讓臺灣的IC設計業者能從單一產品開發,邁向整體系統構建,具備定義新架構、主導新標準的能力。KL1140晶片的問世,不僅讓耐能智慧從邊緣運算邁入AI 核心基礎建設的新格局,更代表臺灣在全球生成式AI時代中,擁有以低功耗、高自主性技術參與未來競局的關鍵實力。

從製造到定義,臺灣AI自主的新起點

在生成式AI帶動的新一輪技術競賽中,算力的分配將決定未來世界的科技秩序。劉峻誠認為,臺灣若要在這場變局中保持主導權,必須擁有能自我定義的架構與技術。「我們不只是為企業造晶片,而是在為國家建算力。」他說。從十年前堅持走上邊緣運算的冷門之路,到今日以KL1140晶片開啟主權AI的新典範,耐能智慧的發展軌跡正體現了臺灣IC設計產業的潛力與決心。未來,耐能智慧將持續推動更高能效、更高彈性的AI架構,讓臺灣不僅能製造世界的晶片,更能定義世界的智慧。

|企業小檔案|
- 企業名稱:耐能智慧
- 創辦人:劉峻誠
- 核心技術:專注邊緣AI SoC專用處理器研發
- 資本額:新台幣6億7520萬元

|驅動國內IC設計業者先進發展補助計畫簡介|
由國科會協調經濟部及相關部會共同合作,所提出「晶片驅動臺灣產業創新方案」,目標在於藉由半導體與生成式AI的結合,帶動各行各業的創新應用,並強化臺灣半導體產業的全球競爭力與韌性。在此政策框架下,經濟部產業發展署執行「驅動國內IC設計業者先進發展補助計畫」,以實質政策補助,於113年鼓勵國內業者往 AI、高效能運算、車用或新興應用等高值化領域之「16奈米以下先進製程」或「具國際高度信任之優勢、特殊領域」布局,以避開中國大陸在成熟製程的低價競爭,並提升我國IC設計產業價值與國際競爭力。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓