機器學習告訴你:《紅樓夢》後40回到底是不是曹雪芹寫的?
機器學習告訴你:《紅樓夢》後40回到底是不是曹雪芹寫的?

前幾天燈神給我發了一篇文章,講的是用機器學習的方式來判定紅樓夢後40回到底是不是曹雪芹寫的。

圖說明

黛玉重建桃花社。畫家孫溫。圖片來自:Wikipedia


我這段時間也在自學Andrew Ng的機器學習課程,還差4週就能完成課程了。

電腦是一個很強調learning by doing的學科,於是我也來「學以致用」,用剛學到的SVM演算法來分析下雪芹老師到底有沒有寫後面的40回。

作為一個從沒看過紅樓夢的人,我的大致思路是這樣的:

  1. 受到《獵人》裡蟻王破解會長無敵招數的啟發,每個人的寫作都有些小習慣,雖然文章前後說的內容會有差別,但是這些用詞的小習慣不容易改變;

  2. 用開源的分詞工具把全書分詞(python的jieba分詞),然後統計詞頻。把出現頻率超過100次的詞語找出來,人工去掉一些可能因為文章內容造成前後出現不一致的人名、地名;

  3. 然後每一章按照2中的詞頻表,看這一章中出現這些詞語的頻率;

  4. 前80回、後40回各選15回作為機器學習的資料,讓機器學習這些章節的用詞特點,然後推算其他章節的用詞特點是屬於前80回呢、還是後40回;

  5. 如果機器根據這些用詞特徵推算的是否屬於後40回的結果跟實際的結果吻合,那麼就說明後40回的寫作風格跟前80回有很大不同,很可能是兩個人寫的;

好了,下面我儘量少涉及數學跟程式設計的知識,來一步步解讀機器學習是怎麼完成這個問題的。

生成全書的詞頻表

圖說明

我截取了其中一段的詞頻表。像寶二爺、黛玉笑這種涉及人物的詞語,可能前面戲份多、後面戲份少,所以就不選它們作為用詞習慣的特徵,而像忽然、故、只要、可不是這種承接性質的碎詞,就不太容易會受情節的影響,所以適合選出來作為用詞習慣的特徵。

最終,我按照出現從多到少排序,選擇了278個詞作為機器學習的用詞習慣。

將120回的詞頻進行統計

接下來我把每一回出現這278個詞的頻率統計出來,得到我們給機器學習的樣本。這個樣本的樣子大概是這樣的:

圖說明

比如以B行2列舉例,說明在第一回裡面「道」這個動詞,出現了36次。

通常我們在進行複雜的事情前,喜歡先簡化問題,或者給自己一些直觀的圖表,以便瞭解問題。機器學習也是一樣的。

我嘗試著在圖上把前80回和後40回習慣用詞出現的頻率畫出來。以第一回為例,x1座標代表「道」出現多少次,x2座標代表「說」出現多少次,x3座標代表「也」出現多少次......x280座標代表「則」出現多少次。

什麼?超過三維了,那人類的大腦可是沒辦法理解的啊。

沒關係,當我們用燈光照射一個立體的圖時,平面會有它的影子。這個影子雖然沒有立體圖的資訊這麼豐富,不過我們看影子還是可以猜出來大致的樣子。對於高緯度的問題,我們也可以用投影的方式來降低緯度。

雖然資訊損失了不少,不過能給我們一個直觀的感受。

圖說明

這個是120個章節的用詞習慣從278緯降到3維以後的圖,紅色+的點是前80回,藍色o的點是後40回。

從這個圖可以很直接地看到,確實在用詞習慣上有明顯的區別。就算我們沒有機器學習工具的幫忙,也可以大膽猜測後40回是出自於另外一個人了。

下面我們用機器學習來看精確一點的判斷。

機器學習

透過課程我大致瞭解了SVM的原理和簡化版問題的演算法實現,不過對於複雜問題我還是沒這個能力寫程式。於是用python的scikit庫來幫助我來完成這個預測。

演算法的步驟很簡單,前80回、後40回各選15個來餵給機器學習它們的特點,然後把剩下的章節輸入給機器,問它們屬於前80回還是後40回。

圖說明

看out[44]的結果,代表了機器預測這120回的用詞習慣到底屬不屬於後40回(0為不屬於,1為屬於)。

如果你看不懂上面的程式碼,沒關係。我告訴你結果好了。

機器在學習以後告訴我,如果我把隨便一章的用詞習慣告訴它、但不告訴它到底是前80回還是後40回,那麼機器有95%的把握能猜出它是不是後40回。

至此,我們可以很有信心地判斷它們的寫作風格不同。

那麼,問題來了,會不會因為是情節的需要所以導致寫作風格不同了呢?

情節不同會造成用詞習慣多大的差別?

好吧,那我再來做一個旁證。我把另外一部四大名著「三國演義」拿來分析,看看上部跟下部的用詞習慣會不會有比較明顯的差別。

圖說明

這個是三國演義的用詞習慣縮到三維以後的圖,紅色+代表前60部的用詞習慣,藍色o代表後60部的用詞習慣。

你可能會說,雖然中間交叉的地方比較多,但是還是可以看出來是有區分的。

可如果你比對一下跟紅樓夢的圖,你就會發現紅樓夢的差別會明顯得多。

圖說明

紅色+為紅樓夢前80回/三國前60回,藍色o紅樓夢後40回/三國後60回

最後,用機器學習的方式來說,如果我把三國演義隨便一章的用詞習慣告訴它、但不告訴它到底是前60回還是後60回,那麼機器有7成的把握猜對,這個準確度已經遠遠低於紅樓夢的95%的預測水準。

所以,我們用「三國演義」這個旁證來分析,即便是因為情節需要導致的用詞習慣差別也不應該這麼大。

所以,我們就更有信心說曹老先生沒有寫後40回了。

更多的機器學習有趣的玩法,我會在學習的過程中慢慢嘗試的。以上。

本文作者黎晨,原文刊載於他的微信公眾號:黎小晨想太多

關鍵字: #機器學習
往下滑看下一篇文章
從地下室到演唱會都不卡!台灣大哥大如何解鎖全場景、有感升級的5G體驗?
從地下室到演唱會都不卡!台灣大哥大如何解鎖全場景、有感升級的5G體驗?

5G開台邁入第五年,戰場早已從「誰有5G」轉向「誰的5G好用」。夜市、演唱會、地鐵、商圈——這些人潮洶湧、訊號最容易卡頓的地方,才是檢驗網路品質的真實考場。要打造真正有感的5G體驗,靠的不是技術名詞,關鍵在於能否把網路資源變成看得見、用得到的流暢速度。

台灣大哥大擁有最大5G黃金頻寬,以及高覆蓋率的NRCA載波聚合領先技術,為網路傳輸佈局暢行無阻的地圖,打通每一個收訊死角,再加上OpenSignal權威認證背書,不僅是技術成績站得住腳,更讓用戶日常生活使用有感提升。

全台獨家最大頻寬100MHz,讓5G跑得快又穩

要解析5G效能優劣,關鍵在於「頻寬」配置。頻寬就像道路的寬度,直接決定數據傳輸的承載容量。頻寬越寬,越能支撐大量用戶同時連線,確保下載、串流、直播等應用維持順暢體驗,避免因流量壅塞導致服務中斷。簡言之,頻寬就是撐起網路用戶體感的關鍵。

台灣大哥大目前在全球主流5G黃金頻段3.5GHz上,獨家取得全台最大100MHz頻寬資源,達到頻譜配置的頂規水準。實測結果顯示,在理想條件下,此頻寬配置可擁有高達2Gbps下載速率。

1216001092_53M.jpg
圖/ shutterstock

同時,台灣大哥大也已在全台超過2,000處熱點完成5G黃金頻段基地台升級。因此即使遇到夜市商圈、大型演唱會、跨年活動等高密度人流聚集場景,當用戶數量暴增、頻寬需求激增時,完整的基礎建設布局仍能確保訊號不中斷、網速不卡頓。

打通收訊死角,體驗有感不只是口號

除了速度與流量,5G還有一項棘手難題——涵蓋死角與訊號穿透力。特別是在室內深處、地下室等場域,即使該處已有5G涵蓋,實際使用仍有可能無法完全避免的卡頓或不穩狀況。

原因在於5G高頻段雖速度快,但穿透力弱,容易因手機功率有限而發生不穩定的情況。對此,台灣大哥大結合700MHz低頻段的穩定性優勢,以互補式的高低頻協作架構,強化訊號深度與廣度。換言之,在戶外大場景跑得快,在室內密閉空間也能收得到。

NRCA自動切換最佳頻段,上網不怕訊號塞車

台灣大哥大的核心技術優勢,還有NRCA(New Radio Carrier Aggregation)載波聚合技術;NRCA讓行動裝置能同時使用多個頻段上網,如同多車道高速公路,讓資料流在不同頻段間靈活切換,兼顧高速率與深度覆蓋率。當某一頻段出現壅塞,系統能自動將資料流量轉至其他頻段傳輸,以提升整體承載效率與傳輸穩定性。

自2021年率先佈建高低頻NRCA,目前已有超過六成基地台支援這項技術,有效壓縮延遲、提升連線穩定度、強化訊號覆蓋與穿透。此外,合併台灣之星後,台灣大哥大更將全球主流5G黃金頻段3.5GHz的60MHz與40MHz頻寬合併,打造業界最大100MHz,為全台唯一同時整合5G高高頻與高低頻NRCA的電信業者,在5G網路體驗與穩定度領先同業,達到頻譜配置的頂規水準。

隨著短影音、直播、雲端工作等即時傳輸需求爆炸成長,用戶對「穩定滑順」的網路依賴不斷提高。台灣大哥大領先的NRCA載波聚合技術,正好回應用戶需求,無論是在捷運上滑臉書,還是在人聲鼎沸的夜市直播吃美食,都能享受多場景流暢切換的優質5G體驗。

2334636029_63M (1).jpg
圖/ shutterstock

優質有感體驗,經國際權威OpenSignal認證

根據國際第三方認證機構OpenSignal於2025年6月公布的行動網路體驗報告,台灣大哥大在「可用率」、「5G影音體驗」與「整體影音體驗」三項用戶有感的指標上獲得第一名。所謂可用率,意指用戶隨時隨地都能連上網路,關鍵時刻訊號不缺席,不論身處室內或移動場景,都能穩定連線不中斷;同時,良好的影音體驗指標,則代表用戶在觀看影片、雲端會議或滑短影音時,能享有畫質流暢、連線穩定、不易中斷的完整體驗。OpenSignal向來以實測數據為依據,其認證結果可視為對 5G 體驗品質的權威背書。

今年第一季,OpenSignal也針對合併電信後的網路表現進行評比。自2023年底台灣大哥大與台灣之星完成合併後,其在涵蓋體驗的評分顯著提升,並在品質一致性指標上維持82~84%的穩定水準。相較其他合併案例,台灣大哥大是體驗提升幅度最大、整體穩定性維持最佳的合併業者,顯見其網路品質、營運韌性與整合效率。

5G技術是否能成為使用者真正信賴的基礎,關鍵在於能否在生活場景中「被感受到」。台灣大哥大以完整的頻寬資源、彈性技術架構與佈建策略,從速度到穩定、從戶外到室內,打造順暢5G體驗,可期待在這場長期5G競賽中,成為用戶最仰賴的行動網路選擇。

有關更多相關資訊,請查詢網站:https://www.taiwanmobile.com/content/event/nrca/index.html

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
電商終局戰
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓