2016年度挑戰完成!馬克·佐克伯公開100小時打造的AI管家「賈維斯」
2016年度挑戰完成!馬克·佐克伯公開100小時打造的AI管家「賈維斯」
2016.12.20 | Facebook

Facebook創辦人馬克·佐克伯(Mark Zuckerberg)今日發表一篇網誌,公布2016年自我挑戰的成果。

我2016年的個人挑戰是,建造一套簡單的人工智慧管家--像《鋼鐵人》裡的「賈維斯」(Jarvis)。

100多小時打造「賈維斯」

佐克伯稱今年花了大約一百多個小時,利用閒暇時間,開發了「賈維斯」系統,現在已經建立好簡單的AI,可透過手機、電腦與「賈維斯」溝通,操控家中的電器、音樂及保全。「賈維斯」能用文字訊息或口語溝通聲控開關燈、依個人喜好播放音樂、自動辨識門口的訪客並發表通知、觀察女兒在家的動態,並在起床時自動播放中文課程等。

「賈維斯」智慧管家使用的人工智慧技術,包括自然語言處理、語音識別、物體及臉部辨識以及強化學習,以Python、PHP、Objective C語言編寫。

佐克伯於網誌中表示,原本預期透過這項挑戰,學習AI技術與工具,但過程中同時也更了解家庭自動化的概況,及親身接觸Facebook工程師使用的各種內部技術工具。文中他也分別就家庭系統連接、自然語言處理、視覺辨識、訊息機器人等方面,提出一些實作心得、目前限制與未來趨勢。

家庭物聯網目前的困難

佐克柏文章中提到,實作時由於不同設備系統都使用不同語言與協定,要先寫程式處理,才能著手建構AI。此外,目前多數電器也還沒有連網。要使「賈維斯」這樣的智慧管家能多方應用,需要更多設備連接,業界也需要開發通用的API與標準,使設備間能相互通訊。

自然語言的複雜性

佐克柏讓「賈維斯」理解自然口語有兩步驟,首先要讓AI能以文字訊息進行溝通;接著利用語音轉文字技術,就能直接用語音溝通。

不過,人類語言其實相當複雜。除了利用關鍵字理解指令,佐克柏很快發現,AI還需進一步學習同義詞才能理解(如「家人房」(family room)和「客廳」(living room)兩個詞,在佐克柏家是指同樣的空間)。

對任何AI來說,環境脈絡線索也很重要。同樣一句「開燈」或「打開我的辦公室的空調」,由佐克柏或由太太Priscilla Chan說出口,可能是指完全不同的空間。

自然語言在播放音樂方面也很複雜,因為系統要處理大量關鍵字,指令範圍也更大。佐克柏舉了個有趣的例子:同樣是「play X」(「播放X」)的指令,「play someone like you」、「play someone like Adele」、「play Adele」,看似微小的差異,意思卻完全不同,分別是播放Adele的「someone like you」這首歌、請系統建議與Adele類似的音樂、以及建立一個Adele的歌曲列表來播放。透過正反饋系統,AI能夠學習區別差異。

此外,佐克柏也提到,雖然語音識別系統近來已改進,但仍然不足以理解多人對話的語音。語音識別依賴聽與預測,所以結構化的語音仍比非結構化的對話更容易理解。

視覺與臉部辨識的應用

佐克柏在自家門口安裝數架攝影機,並建立簡單的伺服器,進行人臉偵測與辨識處理。識別身分後,會檢查列表,確認是不是預期的訪客,決定是否放行,並通知佐克柏。

電腦視覺也可以拿來判斷女兒何時醒來,就可以開始播放音樂或華語課程;也可以判斷人正在屋內何處,AI就能正確回應像「開燈」這樣缺乏環境線索的指令。AI系統擁有的線索資訊越多,整體就越聰明。從佐克柏的心得看來,視覺辨識對於提供語言表面的指令之外的環境線索相當有幫助。

文字訊息使用得比預期多

為了能從任何地方透過手機與「賈維斯」進行溝通,佐克柏利用自家的Messenger架構(messenger.com/platform),開發賈維斯對話機器人,發送文字或語音,就會立即轉發到伺服器處理、執行命令。

出乎佐克柏意料的是,相較於語音,使用文字訊息溝通的情況比預期多得多,主因是簡訊比較不會干擾旁人,「賈維斯」傳來的訊息也可以等想看時再看。

佐克柏提到,喜歡文字通訊大於語音通訊的偏好,符合在Messenger與WhatsApp觀察到的狀況,全世界的文字訊息比語音通訊量增長更快。未來AI產品不能僅專注於語音,還需要私人訊息介面。利用像Messenger的平台,也比從頭開發新的應用軟體更好。佐克柏的經驗認為,我們未來都會與像「賈維斯」這樣的機器人溝通。

「我們的內部工具跟基礎建設做得很棒!」

佐克伯看來相當自豪於Facebook軟體基礎工程和內部工具,並強調今年透過自己親身開發AI的經驗發現,Facebook程式碼資料庫組織極有條理、容易搜尋,無論是臉部識別、語音識別、對話機器人框架或iOS開發,以及各種開源資源工具,都使「賈維斯」的開發節省非常多時間,也逐一羅列Facebook所提供的各種資源。

佐克伯考慮過開放「賈維斯」的程式碼,只是目前系統緊密綁定到自己的家庭、電器和網路配置,若將來建立更抽象一層的家庭自動化功能,也許就會釋出。

重點在於「教會AI自己學習新東西」

雖然這項挑戰將進入尾聲,佐克伯表示將會繼續改進「賈維斯」。佐克伯也提到,他的長遠目標是摸索如何教導人工智慧自行學習新技能,而不是必須教它執行特定任務。若多花一年時間在這個挑戰上,他會更聚焦在學習「學習」是如何運作的。他提到:

某種程度上,人工智慧比我們想的更近、也更遠。AI越來越接近能做到比多數人預期的更強大的事:駕駛汽車、治療疾病、發現行星、理解媒體。這些都將對世界產生巨大影響,但我們仍在找尋真正的智慧是什麼。

自然語言、臉部識別、語音識別等,其實都是相同的模式辨識技術的變體,也就是向電腦展示許多例子,以使其能準確識別,不過這些都還是專門用來解決特定問題,而不是通用的人工智慧系統。我們仍不清楚「學習」是如何運作的,以及如何建立一個可以自行學習新技能的系統。

今天佐克伯也接受媒體FastCompany獨家採訪,並公布一小段「賈維斯」智慧管家的影片。

佐克伯也宣布將在幾週內,分享他下一年度的個人挑戰。

所以,「賈維斯」的聲音聽起來怎麼樣?

可能有人還記得,前一陣子佐克伯在Facebook上問大家:賈維斯的聲音該用誰的好呢?還因此「釣出」飾演東尼·史塔克(賈維斯的主人)小羅勃·道尼(Robert Downey Jr.)來留言!因此佐克伯今天還賣了一個關子,表示明天他將會釋出賈維斯的影片,到時候大家就會知道賈維斯的聲音會是誰的了。

2016/12/21更新:佐克伯釋出賈維斯的影片,我們也知道是哪兩個人幫賈維斯配音了 XD

資料來源:馬克·佐克伯的FacebookFastCompany

往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓