全方位留客,Yahoo奇摩要客服團隊做電話接單代購
全方位留客,Yahoo奇摩要客服團隊做電話接單代購

依網路而起的電商業者,現在也要回頭去做電話購物了。不過與其說Yahoo奇摩推出電話訂購新服務,不如說他們是把客服的工作範圍擴大了。

從高齡消費者需求發想,推出小金孫專線

Yahoo奇摩指出,60歲以上族群雖不是網購市場的主力,但這群人的平均消費力其實是很強的,而Yahoo奇摩發現,這個族群之所以使用網購的比例相對較低,問題可能不是在於不會上網,而是在挑好商品後,後續輸入會員資料、送貨地址、信用卡號碼等步驟對他們來說不夠便利。這就是為什麼Yahoo奇摩決定推出他們在內部暱稱為「小金孫專線」的電話訂購服務。

shopping online
除了上網購買,Yahoo奇摩現在也要提供電話下單的選擇。
圖/ shutterstock

簡單來說,這個服務讓消費者可以在網路上先選好想要的商品後,再撥打電話訂購專線,告知Yahoo奇摩服務人員想要的商品和送貨地址,最後以貨到付款的方式結帳。

Yahoo奇摩購物事業群行銷運營部總監簡育靖表示,目前他們的平台上約有10萬種快速到貨商品都可以接受以電話訂購的方式下單。

而這個新服務的背後,其實是由Yahoo奇摩既有約200位客服人員,以機動式調配的方式來提供電話代訂服務。簡育靖表示,因為服務才剛上線,還沒有大力宣傳,所以目前每日接到的電話下單量還不到100通,而未來若需求大幅成長,他們也會考慮擴編客服團隊。

另他指出,以目前電話訂購的使用情形來看,撥電話進來的消費者中,約有35%最後會完成交易。

提升服務,但不利消費者行為掌握

同時也值得注意的是,雖然Yahoo奇摩這個服務的發想是來自較年長族群的使用需求,但實際上這個服務不限年齡。而且消費者撥打電話後,也無須報告會員帳號,或是姓名、年齡等個人資訊,基本上只需要提供商品名稱和送貨地址。

只是對消費者來說,這樣的服務或許還算便利,也不會有個資疑慮,但另一方面站在Yahoo奇摩的立場,透過電話由客服人員代為下單的方式,也會讓他們無法蒐集、掌握來自這個通道的消費者行為數據。

實際上,在使用者不必提供個人資訊的情況下,其實最終雅虎也無法判別推出電話訂購是不是真的為他們吸引到高齡使用者。而整體來看,電話訂購主要應該還是以服務性質居多,是客服業務的延伸,非新銷售點的建立。

關鍵字: #Yahoo
往下滑看下一篇文章
以晶片的一瓦算力開啟AI新架構!耐能智慧從邊緣到核心,打造臺灣主權算力新典範
以晶片的一瓦算力開啟AI新架構!耐能智慧從邊緣到核心,打造臺灣主權算力新典範

當全球聚光燈都匯集在那動輒使用上萬顆圖形處理器(Graphics Processing Unit, GPU)、耗能堪比核電廠的資料中心時,另一場關乎AI永續發展的運算革命正悄悄發生。這場革命的核心,是如何以更低能耗、更高效率的方式支撐下一世代的人工智慧。而耐能智慧(Kneron)正是這場轉變的推動者之一。

早在2015年,當多數企業仍沉浸在雲端運算帶來的紅利時,耐能智慧創辦人暨執行長劉峻誠便選擇了「邊緣運算」之路的賽道,投入AI系統單晶片(System-on-Chip, SoC)與神經網路處理器(Neural Processing Unit, NPU)的開發。「如果 GPU 是需要龐大設備才能運行的錄影帶,中央處理器(Central Processing Unit, CPU)是性能平庸的 影音光碟(Video Compact Disc, VCD),那麼 NPU 就是能在輕薄裝置中高效運算的 MP3。」劉峻誠用一個簡單的譬喻如此描述著,這不只是晶片製程的改進,而是從架構層重新定義AI運算的方式。

十年磨一劍,如今耐能智慧的NPU晶片已成功進入物聯網、安防、車用與伺服器等不同領域。從智慧水表、穿戴裝置到車用語音系統,乃至企業伺服器與工業應用,都能在有限功耗下執行即時AI運算。合作夥伴從國內上市櫃企業到歐美等地的國際大型企業,都能看見耐能智慧身影,「我們從GPU、CPU進不去的地方出發,讓晶片像樂高積木一樣,從只需一顆晶片的穿戴式裝置,到需要多顆晶片的伺服器,都能使用我們的晶片。」劉峻誠說。

面對算力與能源雙重瓶頸,耐能智慧以新架構迎戰生成式AI時代

面對終端AI應用面臨的「資料流衝突」瓶頸,耐能智慧創辦人暨執行長劉峻誠指出,新世代AI運算不再只屬於
面對終端AI應用面臨的「資料流衝突」瓶頸,耐能智慧創辦人暨執行長劉峻誠指出,新世代AI運算不再只屬於雲端,必須開發能兼容多模態資料並在低功耗環境下運行的自主架構。
圖/ 數位時代

「語言模型和影像模型的資料處理方式完全不同,」劉峻誠解釋到,語言模型要短時間內處理大量資料,但影像模型則需要長時間、連續的低流量傳輸。而傳統AI架構無法同時兼容這兩種特性,這造成了終端AI應用面臨「資料流衝突」的瓶頸。也正是在這樣的挑戰下,成為耐能智慧下一階段的技術突破口。生成式AI不再只屬於雲端,運算正快速轉移至終端,從智慧家庭到醫療、車用、製造現場,都迫切需要能在低功耗環境下即時運行的AI系統。

但更大的壓力來自能源現實與國家安全。劉峻誠表示,GPU架構的能耗與散熱需求驚人,一個大型AI資料中心每年電費可高達60億美元,碳排放量更是巨獸等級。「如果繼續用GPU支撐生成式AI,將會對淨零碳排的目標帶來嚴重衝擊。」劉峻誠坦言並進一步指出,臺灣雖是全球GPU製造重鎮,但本地可用算力有限。「我們製造了全世界近8成的GPU,卻沒有自己的算力,」他語帶無奈,「如果國家級AI應用仍須仰賴境外基礎設施,國家的核心技術與自主權將受制於人,不利於在AI時代掌握主導地位。」

因應這場可能產生的算力主權的危機,耐能智慧決定以「多模態資料流衝突」與「低碳永續算力」這兩項挑戰為目標,開發新世代AI晶片架構。為加速這場技術革命並將臺灣的自主架構推向國際,耐能智慧投入全新晶片KL1140的開發,並成功得到由經濟部產業發展署推動的「驅動國內IC設計業者先進發展補助計畫」(以下簡稱晶創IC補助計畫)的支持。該計畫在國科會協調與經濟部及相關部會共同合作所提出「晶片驅動臺灣產業創新方案」的框架下,以實質政策補助鼓勵業者布局AI、高效能運算或新興應用等高值化領域的關鍵技術,提升臺灣IC設計產業的國際競爭力與韌性。

從晶片創新到主權AI,晶創IC補助計畫助攻耐能跨入新戰場

耐能智慧透過經濟部「晶創 IC 補助計畫」加速開發的 AI 晶片 KL1140,其效能與能耗表現均顯
耐能智慧透過經濟部「晶創 IC 補助計畫」加速開發的 AI 晶片 KL1140,其效能與能耗表現均顯著提升。
圖/ 數位時代

「KL1140最大的突破在於多模態資料處理架構的創新。」劉峻誠直言其中關鍵。在晶創IC補助計畫的挹注下,耐能智慧得以加速開發新一代晶片,這不僅是十年研發累積的成果,更是政策資源與技術創新的結合,象徵著臺灣在AI架構自主化道路上的重要里程碑。

這項架構革新,使KL1140在效能與能效上都達到顯著飛躍。相較於前一代產品,效能提升6至8倍、能耗比提升10倍、體積縮小至四分之一;以往需10瓦才能運行的任務,現在僅需1瓦即可完成。「你看GPU要加風扇、要水冷,而我們不用,」他笑著說,而這就是低功耗的力量。

這樣的設計,使KL1140成為真正能落地的AI晶片,既可部署於穿戴、車用與工業場域,也能堆疊成伺服器模組,實現了靈活的異構運算(Heterogeneous Computing)基礎建設。透過晶創IC補助計畫的協助,耐能智慧不僅強化晶片設計,更能整合模組、子系統與軟體生態,打造可供企業與政府使用的在地AI解決方案,邁向「AI基礎建設提供者」的新定位。劉峻誠也透露,目前KL1140晶片已開始導入國際主權AI專案,協助能源與環境條件嚴苛的地區,利用該晶片低功耗與高算力的特性,順利發展AI自主。

「我們不是在打造更大的GPU,而是在打造更聰明的AI,」劉峻誠強調。「主權AI的關鍵不只是算力自主,更是能源自主。」他認為,晶創IC補助計畫的核心價值在於讓臺灣的IC設計業者能從單一產品開發,邁向整體系統構建,具備定義新架構、主導新標準的能力。KL1140晶片的問世,不僅讓耐能智慧從邊緣運算邁入AI 核心基礎建設的新格局,更代表臺灣在全球生成式AI時代中,擁有以低功耗、高自主性技術參與未來競局的關鍵實力。

從製造到定義,臺灣AI自主的新起點

在生成式AI帶動的新一輪技術競賽中,算力的分配將決定未來世界的科技秩序。劉峻誠認為,臺灣若要在這場變局中保持主導權,必須擁有能自我定義的架構與技術。「我們不只是為企業造晶片,而是在為國家建算力。」他說。從十年前堅持走上邊緣運算的冷門之路,到今日以KL1140晶片開啟主權AI的新典範,耐能智慧的發展軌跡正體現了臺灣IC設計產業的潛力與決心。未來,耐能智慧將持續推動更高能效、更高彈性的AI架構,讓臺灣不僅能製造世界的晶片,更能定義世界的智慧。

|企業小檔案|
- 企業名稱:耐能智慧
- 創辦人:劉峻誠
- 核心技術:專注邊緣AI SoC專用處理器研發
- 資本額:新台幣6億7520萬元

|驅動國內IC設計業者先進發展補助計畫簡介|
由國科會協調經濟部及相關部會共同合作,所提出「晶片驅動臺灣產業創新方案」,目標在於藉由半導體與生成式AI的結合,帶動各行各業的創新應用,並強化臺灣半導體產業的全球競爭力與韌性。在此政策框架下,經濟部產業發展署執行「驅動國內IC設計業者先進發展補助計畫」,以實質政策補助,於113年鼓勵國內業者往 AI、高效能運算、車用或新興應用等高值化領域之「16奈米以下先進製程」或「具國際高度信任之優勢、特殊領域」布局,以避開中國大陸在成熟製程的低價競爭,並提升我國IC設計產業價值與國際競爭力。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓