當AI防禦遇上AI攻擊,「以子之矛,攻子之盾」正在資安界上演
當AI防禦遇上AI攻擊,「以子之矛,攻子之盾」正在資安界上演
2018.10.31 | IBM

科技可以為善可以作惡,人工智慧(AI)也是,端看人類如何使用它,而在資安世界裡,這場防禦端和攻擊端的AI攻防前哨戰已經開打。

最新AI攻擊手法,插入噪音就能破壞語音辨識系統

IBM Security CTO兼VP Koos Lodewijkx分享,目前至少有三種與AI相關的資安攻擊手段。

第一種是利用AI提高攻擊效率。例如,現在駭客可以透過機器學習,分析社群媒體上的訊息、朋友圈等等,依照這些個人化資訊發起針對性攻擊,提高釣魚攻擊成功率。此外,現在網路上也出現透過機器學習、可以自動辨識圖像的免費軟體XEvil,讓駭客可破解用來防堵自動化攻擊的驗證碼CAPTCHA機制。

第二種則是駭客攻擊AI系統,例如以一種改變系統的方法進行攻擊,簡單來說就是污染AI系統,或是找到AI系統弱點、繞過防禦以進行攻擊。

Lodewijkx舉例,微軟在2016年推出聊天機器人Tay,透過機器學習技術讓他它可在每次的對話中改善回話,但上線24小時後就被「玩壞」,說出種族歧視的言論。不只是聊天機器人,Lodewijkx表示,現在的技術也能做到入侵語音辨識系統,只要在聲音中插入噪音,就能徹底改變翻譯結果,讓機器說出特定語句。

雖然這些看似無傷大雅,但Lodewijkx提醒,AI已經被企業大量用於商業營運中,一旦被駭客知道模型如何訓練和運作,就能藉由破壞訓練模型的數據來操控模型。例如,銀行把AI導入借貸決策系統,藉由分析申請人的收入、年齡、居住地、信用分數等,決定是否該批准借貸,一旦找到方法繞過偵測,就算有很差的信用分數仍可成功貸款。

「我們在產業所使用的機器學習,其中很多的模型仍非常脆弱,」Lodewijkx說,「如果你可以操控訓練模型的數據、輸入值,你就可玩弄這個模型。」

最後一種攻擊手段,駭客著點的不是模型本身,而是用來訓練AI模型背後的數據。Lodewijkx表示,駭客已經可以竊取訓練AI模型背後的數據,以圖像辨識系統為例,正常情況是,給出圖片後,系統可以辨識出人名,而在破解系統後,駭客只要擁有姓名,就能逆向重建出圖片。

AI從三層面防禦駭客攻擊

不只是攻擊端,AI之於資安防禦,也是不可獲缺的角色,像是IBM旗下資安產品幾乎已全面導入AI。

為什麼要用AI防禦?Lodewijkx指出,現在的資料量龐大,來自網路、電腦系統、資料庫等等,隨之而來的是資料、威脅、環境都變得更複雜;在此情況下,卻面臨資安技術人力短缺,IBM調查指出,到2022年,資安領域會有180萬份的資安人力短缺。這也是為什麼需要在資安工具中導入AI,而AI也能提高偵測和反應的速度,降低損失。

Lodewijkx指出,目前最常見的AI資安應用是「預測分析」(predictive analytics),也就是藉由機器學習分析大量數據,從中找出異常。「市場上幾乎每個人都說有將AI導入資安中,就是這個分類。」他說。

Koos Lodewijkx_IBM Security CTO &VP_2018_10_09_蔡仁譯
儘管AI已經被大量用在資安防禦,但IBM Security CTO 兼VP Koos Lodewijkx認為,現階段AI仍須和人類合作,因為AI可以做很多例行工作,但仍無法做到需要創造、調查類的工作。
圖/ 蔡仁譯攝

例如,監控網路流量或使用者行為,找出不尋常的地方,或是觀察人類如何和電腦或手機互動,進而分辨出是真正的人類、還是假裝成人類的惡意軟體。此外,也能找出「假陽性」的威脅警報,降低誤報率。

第二類則是智能強化(Intelligence consolidations),也就是把資安研究工作交給AI。Lodewijkx解釋,IBM教旗下人工智慧Wastson讀懂資安相關的新聞、研究報告、Twitter訊息等等,進而建立知識圖譜(knowledge graph),並找出每個知識間的關聯性。訓練完成後,當他們告訴Watson一個IP位址、網址或檔案,Watson就可以回報該檔案的相關訊息,如和哪種病毒有關、常被哪些駭客組織使用、鎖定哪些產業等等,讓分析師不用再自己去讀大量資料。

第三種則是智能回應(intelligence response),目標在於提高一定時間內的分析效率。Lodewijkx指出,以資安營運中心為例,分析師有58%的時間都是花在重複性工作上。舉例來說,當資安監測系統發出警示,分析師必須比對不同的應用程式、資料庫和系統,確認該警示是否為真,而正因為這些步驟是固定的,很適合自動化。

AI不是資安防禦的完美解方

儘管現在AI已經被大量用於資安產品,但Lodewijkx認為AI並不能解決所有資安問題,「我們距離那時還很遠。 」

Lodewijkx解釋,現階段AI只能針對特定任務,使用場景仍非常狹隘,雖然可以強化防禦,但仍需要和其他防禦方式相輔相成,如更新補丁、保護憑證、防火牆等等。

更重要的是,AI仍需要和人類合作。「我們還沒有進入AI比人類聰明的時代,」Lodewijkx解釋,機器學習模型最擅長的地方是,做人類訓練他們做的事情,這也是為什麼AI可以做很多例行工作,但仍無法做到需要創造、調查類的工作。反過來講,這也意味著AI攻擊也只能做好一件事,當被訓練的攻擊手段不行,AI也無法像人類一樣自己想出別種攻擊方法。

「這其實有點像軍備競賽(arm race),」Lodewijkx說,現在駭客學習AI、取得演算法、雲端計算能力等成本都越來越低,這也讓防禦端的偵測和回應速度必須更快及精準。而這場AI資安攻防的前哨戰,才剛開打。

往下滑看下一篇文章
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作

現代人手機不離手,通勤時滑短影音、午休追串流影劇、下午開視訊會議,網路影音應用成為工作與生活的普遍情境。然而,一旦畫面卡頓、畫質不穩,或聲畫不同步,使用體驗立刻打折,甚至影響工作效率與專業判斷。

也因此,網路品質不再只是「快不快」的問題,更關乎能否在高使用量的日常情境下,維持穩定、連續的表現;對此,第三方評測也採用更貼近使用者情境的方式衡量網路體感。而 Opensignal 最新報告指出,台灣大哥大在影音體驗相關項目是業界唯一同時拿下「影音體驗」與「5G 影音體驗」雙項獎項的電信商,其中,關鍵的差異是什麼?

為何「影音體驗」是網路品質的關鍵指標?

愈來愈多消費者入手旗艦機,追求的不只是硬體規格,還有流暢的 AI 應用與多工協作。然而,無論是視訊即時翻譯或雲端會議,這些高階功能都有一個共同前提:網路必須穩定。一旦網路品質不佳導致畫質下降或音畫不同步,旗艦級的 AI 功能將形同虛設。

這也意味著,檢驗網路價值的標準已經改變。如今,不能只看單點測速的瞬間峰值,更重要的是高負載情境下的耐力表現。因此,比起單點測速,影音體驗會是更完整的測試標準,直接挑戰了網路在室內深處、移動途中或人潮聚集時的網路實力;而唯有在長時間串流下依然不卡頓、不降畫質,才稱得上是高品質的連線。

換言之,隱身在硬體背後的電信商,才是發揮旗艦機性能的關鍵;唯有透過最佳網路品質,才能讓手中的旗艦機既是規格領先、也是體驗領先。

唯一影音體驗雙料冠軍,Opensignal 權威認證的有感體驗

雖然相較於測速數據,影音體驗更貼近日常使用,但也更難量化。對此,國際權威認證 Opensignal 的「影音體驗分數」,依循 ITU 國際標準,透過真實用戶裝置在行動網路上進行影音串流的實測數據,觀察不同電信網路在實際使用情境下的表現。

簡單來說,評測聚焦三項核心指標:影片載入時間、播放期間的卡頓率,以及畫質(解析度)是否能穩定維持。使用者從開始播放到持續觀看的整體品質,分數以 0–100 呈現,分數愈高,代表在三項指標的表現愈佳。相較於單點測速,這類評測更能呈現長時間、高使用量下的網路品質。

人流情境不降速.jpg
圖/ 數位時代

而在今年最新公布的 Opensignal 評測中,台灣大哥大獲得「影音體驗」獎項唯一雙料冠軍。其中,「整體影音體驗」為全台獨得第一名,「5G 影音體驗」則與遠傳並列第一。

之所以能在影音體驗拔得頭籌,關鍵在於台灣大哥大目前是全台唯一整合 3.5GHz 頻段 60MHz 與 40MHz、形成 100MHz 總頻寬的電信業者,亦是現階段全台最大 5G 黃金頻寬配置。頻寬愈寬,代表單位時間內可傳輸的資料量愈大;在大量使用者同時進行影音串流、視訊互動的狀態下,更能維持穩定傳輸、減少壅塞發生機率。

台灣大獲權威認證,NRCA技術撐起穩定基礎

除了頻寬帶來的流量優勢,台灣大哥大也採用「NRCA 高低頻整合技術」,也就是透過高低頻協作,讓 3.5GHz 負責高速傳輸、700MHz 補強覆蓋與室內連線,改善室內深處與移動情境的訊號落差,提升連線連續性。

同時,為了讓住家、通勤動線、商圈與觀光熱點等高使用場域維持穩定表現,台灣大哥大已在全台超過213個住宅、觀光及商圈熱點完成 100MHz 布建,提升人流密集區的網路覆蓋率。

5G高速(小).jpg
圖/ dreamstime

值得注意的是,在今年的 Opensignal 評比中,台灣大哥大還拿下了「5G 語音體驗」與「網路可用率」兩項第 1 名,累計獲得 4 項獎項。這意味著不僅具備影音體驗優勢,在語音互動與連線率等關乎用戶日常應用的基礎指標,皆有亮眼成績。

尤其,隨著影音與即時互動成為新世代的工作常態,網路品質的重要性只會持續上升。無論是遠距協作所仰賴的視訊與畫面共享即時同步,內容創作對直播與即時上傳連續性的要求,或是 AI 視訊互動、即時翻譯與會議摘要等新應用,都高度依賴低延遲與穩定的資料傳輸。網路品質因此不再只是連線條件,更是支撐內容生產、協作效率與新應用落地的基礎能力,甚至直接牽動競爭力。

而台灣大哥大經 Opensignal 認證、於多項關鍵指標領先業界,不僅將成為 AI 時代的重要後盾,也讓使用者能更充分發揮高階手機的效能,把「快、穩、滑順」落實在每天的工作與生活中。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓