人工智慧與1%問題
人工智慧與1%問題

現在氣勢旺盛的人工智慧技術,是以機器學習類神經網路為主流的。雖然募資中的創業家和不同投資哲學的風險資本家滿嘴都是人工智慧,彷彿世界上所有的問題都即將被人工智慧解決,但機器學習本質上並不適合我常說的「1%問題」(1% problem)。

我所謂的「1%問題」,是指雖然只有極低的機率會出現極端狀況,但一但出現極端狀況,其後果往往非常嚴重,以致於讓整體回報期望值跌落為負值。

簡單以數學解釋的話,我們可以假設一個抽籤遊戲。籤筒中有99隻白籤和1隻黑籤,抽中白籤的話可以得到美金$100,抽中黑籤則得賠美金$9,900,那麼這個抽籤遊戲的淨回報期望值為美金$0:

99% × $100 + 1% × (−$9,900)=$0

基本上這是一個不賺也不賠的遊戲,理性的金融思考邏輯下,任何人都不應該玩這個遊戲,因為期望回報為$0,但波動性大於0(有99%機會可能賺錢、有1%機會可能賠錢),比起啥都不做(波動性為0)就可以穩穩的賺到(或賠掉)$0來說應該是一個比較不具吸引力的遊戲。

如果上面這個遊戲在抽到黑籤時必須要賠出超過$9,900的金額,遊戲的回報期望值就會變成負值,成為一個不管什麼狀況下,理性的金融人都不應該參與的遊戲。

接下來,我們把這個99%正確率的場景對應到影像辨識,也正是機器學習最早出現突破的範疇。

類神經網路的主要演算法其實在很早以前就已經存在,但實際的應用很有限,除了現任臉書AI長的Yann LeCun大神當年在貝爾實驗室開發的支票手寫辨識機器得到廣泛的運用以外,大部分通用影像辨識仍然錯誤率很高而且速度奇慢無比。

二十一世紀前十年,關於電腦永遠無法擊敗人腦的說法常常採用一個簡單的例子:人類的小孩沒什麼知識,但只要看過貓這種動物幾次,不用特別學習就可以十拿九穩地辨認出任何外貌的貓來,但這麼簡單的問題電腦卻常常掙扎半天還是頻頻出錯。

檢視現有機器學習式的人工智慧一個大陷阱

但是在研究者發現使用繪圖晶片(GPU)進行類神經網路運算的速度,遠比用中央處理器(CPU)快很多後,事情開始有了爆發性的進展。2012年的ImageNet影像辨識大賽(ILSVRC,ImageNet Large Scale Visual Recognition Challenge)中,一個深層卷積網路達成16%的辨識錯誤率,兩年後的贏家則一舉突破10%來到7%,隔年2015年年底,機器終於超越人類平均5%錯誤率的辨識能力來到3.6%,2017年的ILSVRC大賽的38支隊伍裡更是有高達29支都成功摜破5%——看來在各種影像辨識的任務中,使用任勞任怨的機器取代任性的人類已經是不可逆的進程?

但是以上的論述中都只討論到錯誤的機率,並沒有討論到各種不同的場景的後果,這裡我們要引入剛才定義的「1%問題」,來檢視現有機器學習式的人工智慧系統一個很大的陷阱。

中國學校課堂中將安裝「慧眼(smart eye)」.jpg
中國學校課堂中將安裝「慧眼(smart eye)」,上課恍神、不專心通通逃不過機器法眼,透過人臉辨識監控學生專心程度,還會被列為成績評量依據。
圖/ unsplash

場景一:傳統保全

傳統保全使用人類實況監看保全攝影系統,電影或電視影集中也常常出現這樣的場景:兩三個穿著警衛或警察制服的人盯著十幾個分割螢幕,結果一聊天分心,讓正義的夥伴或者變態殺人狂成功避過監視進入保全區域。

保全不可能做到100%毫無疏漏,因此這門生意本來就是機率問題。聘用更多人監看電視就可以降低疏漏率,但是邊際效用下降,成本上升。在保戶能夠接受的費用範圍內,保全用戶和保全公司在合約的框架下接受一定的總體疏漏機率,在上面追加同樣是機率問題的保險制度和再保制度,從而得到一個可行的生意模式。

如果使用影像辨識系統來取代坐在螢幕前監看的人類,成本多半可以降低,而且疏漏率更是遠比會打瞌睡和偷懶的人類低。因此保全用戶可以享受更高的安全,保全公司也有機會賺到更多的錢,儘管疏漏率仍然不會降到0%。

這是一個真正有用的機器學習應用場景。

場景二:行事曆自動排程

我們風險資本家的每天的日常就是一場接著一場的會議,但是不同於企業內部會議只要排時間,我們的會議是四散在各地,中間穿雜著各種電話會議,外加大量的外地出差,這表示跟會議對象確認會議時間排進行事曆是一個非常耗時的事情,郵件一來一回可能花兩天都還排不好一場會議。

傳統的解決方案是聘用秘書或者助理,好的秘書或者助理會根據會議重要性、敏感性、時區、合夥人飛行狀況、班機延誤風險⋯⋯等各種因素,來和對方進行適當的會議時間、地點和方式協商。

當然這樣等級的秘書或者助理很貴,不是大家都負擔得起的,我自己常常遇到會議對象的秘書其實都不那麼專業(也就是不那麼貴),把事情搞砸的次數也不算少。我們自己Hardware Club因為旗下管理基金總規模還不大,所以並沒有特別編列聘用秘書或助理的預算,大多是合夥人自己排程,也因此在巴黎辦公室,很多時候晚上公司年輕同仁們都下班了,卻還看得到合夥人在這較不花大腦的時段回著郵件,排著下趟出差的會議。

因此我可以理解當年多家知名風險管理公司們——包含DCM VenturesFirstMark CapitalTwo Sigma Ventures和願景基金成立之前的軟銀資本(Softbank Capital)等——進行投資並大肆吹捧x.ai這間位於紐約的新創。

x.ai使用機器學習,用電腦秘書自動分析來信內容,並以自然語言回信請求安排會議,然後根據對方回應的文字內容(時間衝突、地點衝突、時區錯誤⋯⋯等)進行新的時間和地點提案,最後成功達成共識後就自動登錄進使用者的行事曆。

最終理想狀態是機器跟機器對話,因為這樣一來就不需要分析自然語言,可以直接對行事曆和交換變數。但是在抵達這個境界之前,一定會有很多狀況是機器跟人對話,不管是跟當事人還是跟秘書或助理,所以能夠理解前因後果和對話背景的自然語言人工智慧能力就變得很重要。

但在我看來,x.ai的商業考量從第一天開始就有邏輯上的缺陷:會忙到需要秘書或助理幫忙協調行事曆的人,正是因為行事曆項目又多又重要,才會連貓的爪子也想借來用。也只有這樣的人有誘因去使用x.ai的系統,希望能降低一些成本。

但類神經網路機器學習基本上是一個從很大的輸入輸出資料庫,提煉出以簡馭繁的模型的方法,是一個縮減資訊量的過程,理論上不可能達到100%正確,永遠都會有錯誤或搞砸的部分。如果是剛剛保全系統的使用情境,因為保全用戶是分散的,觸發保全系統的犯罪行為也是分散的,因此只要維持整個系統的事件機率低於原本使用人類兼看的系統的機率,人工智慧的應用就是有意義的。

但是在本使用情境中,x.ai或者其他自動行事曆排程系統,就算做到99%正確、比一般律師和助理更可靠,也不見得有意義,因為只要搞錯或搞砸的那1%行事曆事項是非常關鍵的人事物(例如:有意投資基金的機構法人、打算收購公司的大企業執行長等),可能導致的損失會遠遠蓋過之前因為換成機器而節省下來的金額。

我可以理解為什麼分身乏術的風險資本家,有可能因為自己排會議的痛苦經驗,而決定自動排程行事曆是一個很棒的商業點子,又遇到很厲害的人工智慧創業家,因此決定投資。但是我高度懷疑這些風險資本家,今日自己是否仍然仰賴這樣的軟體服務來安排自己的行程 —— 因為我實在無法想像當一個風險資本家跟基金投資人重要的會議被安排錯誤時,他可以接受「平均起來這種錯誤的機率比人類低」的藉口。

美國亞利桑那州坦佩市曾傳出Uber全自動駕駛汽車撞死行人的交通意外.jpg
美國亞利桑那州坦佩市曾傳出Uber全自動駕駛汽車撞死行人的交通意外。
圖/ 美聯社

場景三:自動駕駛

上面所提的「平均起來這種錯誤的機率比人類低」,將我們帶到了目前1%問題可能最嚴重、但偏偏卻又是各方矚目重金押注的場景:自動駕駛。

兩年前,當特斯拉首次有用戶因為使用自動駕駛而遇難時,莫斯克在推文上表示特斯拉的肇事死亡率仍然遠低於一般汽車市場總體統計數據,暗示特斯拉的自動駕駛系統在平均來說是比人類駕駛好的,所以不應該被責怪。

但這種很典型的、看似很理性的工程師邏輯忽略了一件很重要的事情:當一百個人開著一百台車,因駕駛人的問題發生一件致死車禍時,其他的九十九人和九十九台車並不會被一概而論。換言之,這個系統是分散的,每個駕駛人互相獨立不相干。整體來說只要肇事率維持在1%,系統並不會被咎責。

但如果是特斯拉所提供的自動駕駛有著1%的肇事率,那就不是一個分散式系統問題,而是一個中央系統的問題,被咎責的是包含其他九十九台安全無恙的車子在內,總共一百台的數量,可能導致的賠償金或者刑罰也是根據一百台計算。

君不見2009年美國豐田汽車暴衝致死事件,除了造成大量召回以及車廠經濟損失,豐田家族繼承人也被拖到美國國會面前羞辱,更甭提品牌受到的重創。十個月後當調查結果終於出爐,正式排除豐田的責任,並將多數相關事件的肇事原因歸屬於駕駛人,但這時對豐田的永久性傷害已經造成。

同理,特斯拉(或者任何車廠的)自動駕駛系統,目標也不能僅僅是肇事率低於大眾平均,而是要做到更低的數量級,才能避免1%問題導致全盤皆輸。

結論

機器學習類神經網路本質上是一個或然率的系統,用來顛覆原本就是建立在或然率上的商業(例如偵測信用卡盜刷),是非常適合的,因為只要人工智慧的表現能夠比既有的或然率優異,業主就能實現更低成本和更高獲利。

但如果或然率是結果,而且本質上存在「1%問題」(單一事件可能導致巨大損失),那麼就不能單純用錯誤率較低的機器學習類神經網路取代,因為只要出現一隻黑天鵝,就可以否決所有天鵝都是白色的論點⋯⋯。

本文由楊建銘授權轉載自其風傳媒專欄。

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

關鍵字: #人工智慧
往下滑看下一篇文章
補齊未來電子業版的關鍵拼圖!矽眾科技以高階溫度補償驅動晶片IP,助攻高階AI與車用市場
補齊未來電子業版的關鍵拼圖!矽眾科技以高階溫度補償驅動晶片IP,助攻高階AI與車用市場

你是否曾好奇,為何今日的手機能在艷陽下持續運作,而電動車也能從零下的極地順利駛出,精準感測周遭環境?

看似尋常的應用場景背後,其實隱藏著一顆默默進行的「溫度偏移校正」關鍵晶片。這類負責環境感知、並能進行溫度補償的「驅動晶片」,是電子元件穩定運作不可或缺的一環 。然而,這塊高階驅動IC的研發,長期以來卻是臺灣在全球半導體供應鏈中相對薄弱的環節,使得臺灣眾多在零組件領域傲視全球的廠商,在高階應用市場中受制於人。

矽眾科技鎖定高階溫度補償驅動晶片IP,要替臺灣補足產業鏈缺口

「我們臺灣在零組件領域,其實有很多世界第一,例如在全球市佔率領先的振盪器,但始終難以打進高階產品線,就是因為缺少能驅動這些零組件的高階晶片。」矽眾科技創辦人陳世綸開宗明義地指出產業痛點。他解釋,許多臺灣零組件廠商雖擁有卓越的製造能力,但在高階驅動晶片上卻高度仰賴美日大廠,而國際大廠往往不願開放最先進技術,臺灣廠商因此缺乏在價值鏈高附加價值鏈段的話語權,只能在低利潤的紅海市場中競爭。如何打破技術封鎖、強化自主關鍵技術,成為臺灣電子產業邁向國際高端市場的關鍵課題。

而矽眾科技的成立,正是為了補上這道斷鏈而生。作為少數專注零組件驅動晶片矽智財(Silicon Intellectual Property , IP)開發的企業,當AI運算與電動車市場爆發性成長,矽眾科技以可重複授權、穩定可靠的矽智財解決方案,成為產業鏈中不可或缺的關鍵推手。陳世綸說當高階電子產品對穩定性的要求日益嚴苛,就更考驗元件必須能在高溫、低溫甚至劇烈溫度變化下維持效能。這正是「溫度補償」(Temperature Compensation)技術的關鍵價值所在。

「矽眾科技的IP 就像貼心的助理,提醒元件「冷了多穿衣服、熱了脫下外套」,透過溫度補償即時調整參數,即使處於零下 40 度的嚴寒或高達 140 度的酷熱環境,訊號依然能保持精準一致。」陳世綸生動地形容 。

透過開發板進行晶片溫度感測與數位校準測試,確保 MEMS 感測器在不同溫度下依然能維持精準運作。
透過開發板進行晶片溫度感測與數位校準測試,確保 MEMS 感測器在不同溫度下依然能維持精準運作。
圖/ 數位時代

他進一步解釋,晶片內整合了類比的溫度感測器來偵測環境溫度,並將數據傳送給數位電路進行判斷與分析,數位電路再發出指令,精準校準MEMS(Micro-Electro-Mechanical Systems) 感測器的參數,確保其在不同溫度下都能提供正確值,避免因溫度變化導致的誤差和功能喪失,例如手機熱當或汽車失靈 。這種「類比感知+數位判斷校準」的整合能力,正是矽眾科技在高階驅動晶片領域所構築的技術壁壘。

陳世綸表示,矽眾科技之所以選擇IP這條賽道,正是看準了其在產業中的獨特價值。作為IP公司,其設計模組能適用於從0.18微米的成熟製程到小於10奈米的先進製程,客戶可根據自身產品需求快速整合,大幅縮短開發週期。這種靈活性,不僅讓矽眾能服務更廣泛的客戶群,也賦予了臺灣零組件廠商快速切入高階市場的機會。

晶創IC補助計畫奧援,矽眾科技以IP挺進高階市場布局全球

然而,IP的研發是條燒錢的漫漫長路。陳世綸坦言,由於IP的價值在於其穩定性與可重複使用性,但要達到這個門檻需反覆測試與驗證 。他透露,矽眾科技的IP中,每個驅動電路區塊都必須經過數次的設計定案(tape-out)與實體測試,而每次的成本都高達數萬至數十萬美金不等。「沒有政府的計畫支持我們根本做不到,」陳世綸感念地表示,而他口中的計畫正是由經濟部產業發展署所推動的「驅動國內IC設計業者先進發展補助計畫」(以下簡稱晶創IC補助計畫),讓團隊得以持續突破與精進,追求每個電路區塊的極致穩定性與精準度。

晶創IC補助計畫的資金補助,不僅加速矽眾科技的測試進程,也成功讓這個具備溫補能力的高階驅動晶片IP跨入車用與AI市場 。陳世綸說明,此IP主要針對高階MEMS零組件,特別是應用於5G手機、低軌道衛星、AI伺服器中需要高頻率、高準確度且耐溫的振盪器 。同時,它也符合嚴苛的車用認證,確保車載系統在極端溫度下的穩定性 。此外,此IP亦可支援手機中的胎壓偵測、高度偵測等MEMS感測器,因未來的電子產品將大量使用這類元件,且需具備溫度補償能力以維持精準度 。

如今,矽眾科技已與美加、日本、歐洲及臺灣等國內外大廠展開合作。陳世綸欣喜地表示,許多客戶原本因買不到關鍵驅動晶片而受限於低階市場,現在矽眾科技的IP補上了這一塊,他們也終於能進軍高毛利產品線。目前,已有合作夥伴將矽眾的高階驅動晶片IP導入車用認證流程,未來甚至可望進一步進入低軌道衛星與醫療穿戴市場。

矽眾科技站穩利基市場,與全球MEMS企業共舞

有了晶創IC補助計畫的挹注,矽眾科技更能以關鍵 IP 、溫度補償技術,帶領團隊協助臺灣半導體產業鏈從
有了晶創IC補助計畫的挹注,矽眾科技更能以關鍵 IP 、溫度補償技術,帶領團隊協助臺灣半導體產業鏈從「代工製造」轉向「設計賦能」。
圖/ 數位時代

比起一家公司從頭到尾包辦整顆IC的傳統模式,IP公司更像是站在舞臺後方的設計者,協助每一位客戶量身打造表演服、背景道具與燈光效果,讓他們能快速踏上國際舞臺。「我們不做整套產品,但我們讓臺灣的零組件有機會躋身高階應用,不再只是代工。」陳世綸堅定地說,矽眾科技的策略,是站在面對未來5到10年需求的位置上,看見即將來臨的市場缺口,然後在它出現前就先把技術準備好 。

「我們希望矽眾科技未來是跟著全球 MEMS 企業一起共舞,」陳世綸生動的描繪出公司的願景,矽眾科技透過獨特的IP商業模式、關鍵的溫度補償技術以及晶創IC補助計畫的強力奧援,不僅成功在利基市場中站穩腳步,更為臺灣半導體產業開闢了一條高值化的新路徑。這項成果不僅是矽眾科技自身的里程碑,也證明臺灣的IC設計實力,已在全球高階半導體供應鏈中找到了新的戰略位置,從過去的「代工製造」轉向「設計賦能」,引領臺灣零組件產業邁向更高層次的全球市場競爭力。

|企業小檔案|
- 企業名稱:矽眾科技
- 創辦人:陳世綸
- 核心技術:5G通信、人工智慧、物聯網、車用電子矽智財(IP)設計服務
- 資本額:新臺幣1仟700萬元
- 員工數:6人

|驅動國內IC設計業者先進發展補助計畫簡介|
在行政院「晶片驅動臺灣產業創新方案」政策架構下,經濟部產業發展署透過推動「驅動國內IC設計業者先進發展補助計畫」,以實質政策補助,引導業者往AI、高效能運算、車用或新興應用等高值化領域之「16奈米以下先進製程」或「具國際高度信任之優勢、特殊領域」布局,以避開中國大陸在成熟製程之低價競爭,並提升我國IC設計產業價值與國際競爭力。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓