人工智慧與1%問題
人工智慧與1%問題

現在氣勢旺盛的人工智慧技術,是以機器學習類神經網路為主流的。雖然募資中的創業家和不同投資哲學的風險資本家滿嘴都是人工智慧,彷彿世界上所有的問題都即將被人工智慧解決,但機器學習本質上並不適合我常說的「1%問題」(1% problem)。

我所謂的「1%問題」,是指雖然只有極低的機率會出現極端狀況,但一但出現極端狀況,其後果往往非常嚴重,以致於讓整體回報期望值跌落為負值。

簡單以數學解釋的話,我們可以假設一個抽籤遊戲。籤筒中有99隻白籤和1隻黑籤,抽中白籤的話可以得到美金$100,抽中黑籤則得賠美金$9,900,那麼這個抽籤遊戲的淨回報期望值為美金$0:

99% × $100 + 1% × (−$9,900)=$0

基本上這是一個不賺也不賠的遊戲,理性的金融思考邏輯下,任何人都不應該玩這個遊戲,因為期望回報為$0,但波動性大於0(有99%機會可能賺錢、有1%機會可能賠錢),比起啥都不做(波動性為0)就可以穩穩的賺到(或賠掉)$0來說應該是一個比較不具吸引力的遊戲。

如果上面這個遊戲在抽到黑籤時必須要賠出超過$9,900的金額,遊戲的回報期望值就會變成負值,成為一個不管什麼狀況下,理性的金融人都不應該參與的遊戲。

接下來,我們把這個99%正確率的場景對應到影像辨識,也正是機器學習最早出現突破的範疇。

類神經網路的主要演算法其實在很早以前就已經存在,但實際的應用很有限,除了現任臉書AI長的Yann LeCun大神當年在貝爾實驗室開發的支票手寫辨識機器得到廣泛的運用以外,大部分通用影像辨識仍然錯誤率很高而且速度奇慢無比。

二十一世紀前十年,關於電腦永遠無法擊敗人腦的說法常常採用一個簡單的例子:人類的小孩沒什麼知識,但只要看過貓這種動物幾次,不用特別學習就可以十拿九穩地辨認出任何外貌的貓來,但這麼簡單的問題電腦卻常常掙扎半天還是頻頻出錯。

檢視現有機器學習式的人工智慧一個大陷阱

但是在研究者發現使用繪圖晶片(GPU)進行類神經網路運算的速度,遠比用中央處理器(CPU)快很多後,事情開始有了爆發性的進展。2012年的ImageNet影像辨識大賽(ILSVRC,ImageNet Large Scale Visual Recognition Challenge)中,一個深層卷積網路達成16%的辨識錯誤率,兩年後的贏家則一舉突破10%來到7%,隔年2015年年底,機器終於超越人類平均5%錯誤率的辨識能力來到3.6%,2017年的ILSVRC大賽的38支隊伍裡更是有高達29支都成功摜破5%——看來在各種影像辨識的任務中,使用任勞任怨的機器取代任性的人類已經是不可逆的進程?

但是以上的論述中都只討論到錯誤的機率,並沒有討論到各種不同的場景的後果,這裡我們要引入剛才定義的「1%問題」,來檢視現有機器學習式的人工智慧系統一個很大的陷阱。

中國學校課堂中將安裝「慧眼(smart eye)」.jpg
中國學校課堂中將安裝「慧眼(smart eye)」,上課恍神、不專心通通逃不過機器法眼,透過人臉辨識監控學生專心程度,還會被列為成績評量依據。
圖/ unsplash

場景一:傳統保全

傳統保全使用人類實況監看保全攝影系統,電影或電視影集中也常常出現這樣的場景:兩三個穿著警衛或警察制服的人盯著十幾個分割螢幕,結果一聊天分心,讓正義的夥伴或者變態殺人狂成功避過監視進入保全區域。

保全不可能做到100%毫無疏漏,因此這門生意本來就是機率問題。聘用更多人監看電視就可以降低疏漏率,但是邊際效用下降,成本上升。在保戶能夠接受的費用範圍內,保全用戶和保全公司在合約的框架下接受一定的總體疏漏機率,在上面追加同樣是機率問題的保險制度和再保制度,從而得到一個可行的生意模式。

如果使用影像辨識系統來取代坐在螢幕前監看的人類,成本多半可以降低,而且疏漏率更是遠比會打瞌睡和偷懶的人類低。因此保全用戶可以享受更高的安全,保全公司也有機會賺到更多的錢,儘管疏漏率仍然不會降到0%。

這是一個真正有用的機器學習應用場景。

場景二:行事曆自動排程

我們風險資本家的每天的日常就是一場接著一場的會議,但是不同於企業內部會議只要排時間,我們的會議是四散在各地,中間穿雜著各種電話會議,外加大量的外地出差,這表示跟會議對象確認會議時間排進行事曆是一個非常耗時的事情,郵件一來一回可能花兩天都還排不好一場會議。

傳統的解決方案是聘用秘書或者助理,好的秘書或者助理會根據會議重要性、敏感性、時區、合夥人飛行狀況、班機延誤風險⋯⋯等各種因素,來和對方進行適當的會議時間、地點和方式協商。

當然這樣等級的秘書或者助理很貴,不是大家都負擔得起的,我自己常常遇到會議對象的秘書其實都不那麼專業(也就是不那麼貴),把事情搞砸的次數也不算少。我們自己Hardware Club因為旗下管理基金總規模還不大,所以並沒有特別編列聘用秘書或助理的預算,大多是合夥人自己排程,也因此在巴黎辦公室,很多時候晚上公司年輕同仁們都下班了,卻還看得到合夥人在這較不花大腦的時段回著郵件,排著下趟出差的會議。

因此我可以理解當年多家知名風險管理公司們——包含DCM VenturesFirstMark CapitalTwo Sigma Ventures和願景基金成立之前的軟銀資本(Softbank Capital)等——進行投資並大肆吹捧x.ai這間位於紐約的新創。

x.ai使用機器學習,用電腦秘書自動分析來信內容,並以自然語言回信請求安排會議,然後根據對方回應的文字內容(時間衝突、地點衝突、時區錯誤⋯⋯等)進行新的時間和地點提案,最後成功達成共識後就自動登錄進使用者的行事曆。

最終理想狀態是機器跟機器對話,因為這樣一來就不需要分析自然語言,可以直接對行事曆和交換變數。但是在抵達這個境界之前,一定會有很多狀況是機器跟人對話,不管是跟當事人還是跟秘書或助理,所以能夠理解前因後果和對話背景的自然語言人工智慧能力就變得很重要。

但在我看來,x.ai的商業考量從第一天開始就有邏輯上的缺陷:會忙到需要秘書或助理幫忙協調行事曆的人,正是因為行事曆項目又多又重要,才會連貓的爪子也想借來用。也只有這樣的人有誘因去使用x.ai的系統,希望能降低一些成本。

但類神經網路機器學習基本上是一個從很大的輸入輸出資料庫,提煉出以簡馭繁的模型的方法,是一個縮減資訊量的過程,理論上不可能達到100%正確,永遠都會有錯誤或搞砸的部分。如果是剛剛保全系統的使用情境,因為保全用戶是分散的,觸發保全系統的犯罪行為也是分散的,因此只要維持整個系統的事件機率低於原本使用人類兼看的系統的機率,人工智慧的應用就是有意義的。

但是在本使用情境中,x.ai或者其他自動行事曆排程系統,就算做到99%正確、比一般律師和助理更可靠,也不見得有意義,因為只要搞錯或搞砸的那1%行事曆事項是非常關鍵的人事物(例如:有意投資基金的機構法人、打算收購公司的大企業執行長等),可能導致的損失會遠遠蓋過之前因為換成機器而節省下來的金額。

我可以理解為什麼分身乏術的風險資本家,有可能因為自己排會議的痛苦經驗,而決定自動排程行事曆是一個很棒的商業點子,又遇到很厲害的人工智慧創業家,因此決定投資。但是我高度懷疑這些風險資本家,今日自己是否仍然仰賴這樣的軟體服務來安排自己的行程 —— 因為我實在無法想像當一個風險資本家跟基金投資人重要的會議被安排錯誤時,他可以接受「平均起來這種錯誤的機率比人類低」的藉口。

美國亞利桑那州坦佩市曾傳出Uber全自動駕駛汽車撞死行人的交通意外.jpg
美國亞利桑那州坦佩市曾傳出Uber全自動駕駛汽車撞死行人的交通意外。
圖/ 美聯社

場景三:自動駕駛

上面所提的「平均起來這種錯誤的機率比人類低」,將我們帶到了目前1%問題可能最嚴重、但偏偏卻又是各方矚目重金押注的場景:自動駕駛。

兩年前,當特斯拉首次有用戶因為使用自動駕駛而遇難時,莫斯克在推文上表示特斯拉的肇事死亡率仍然遠低於一般汽車市場總體統計數據,暗示特斯拉的自動駕駛系統在平均來說是比人類駕駛好的,所以不應該被責怪。

但這種很典型的、看似很理性的工程師邏輯忽略了一件很重要的事情:當一百個人開著一百台車,因駕駛人的問題發生一件致死車禍時,其他的九十九人和九十九台車並不會被一概而論。換言之,這個系統是分散的,每個駕駛人互相獨立不相干。整體來說只要肇事率維持在1%,系統並不會被咎責。

但如果是特斯拉所提供的自動駕駛有著1%的肇事率,那就不是一個分散式系統問題,而是一個中央系統的問題,被咎責的是包含其他九十九台安全無恙的車子在內,總共一百台的數量,可能導致的賠償金或者刑罰也是根據一百台計算。

君不見2009年美國豐田汽車暴衝致死事件,除了造成大量召回以及車廠經濟損失,豐田家族繼承人也被拖到美國國會面前羞辱,更甭提品牌受到的重創。十個月後當調查結果終於出爐,正式排除豐田的責任,並將多數相關事件的肇事原因歸屬於駕駛人,但這時對豐田的永久性傷害已經造成。

同理,特斯拉(或者任何車廠的)自動駕駛系統,目標也不能僅僅是肇事率低於大眾平均,而是要做到更低的數量級,才能避免1%問題導致全盤皆輸。

結論

機器學習類神經網路本質上是一個或然率的系統,用來顛覆原本就是建立在或然率上的商業(例如偵測信用卡盜刷),是非常適合的,因為只要人工智慧的表現能夠比既有的或然率優異,業主就能實現更低成本和更高獲利。

但如果或然率是結果,而且本質上存在「1%問題」(單一事件可能導致巨大損失),那麼就不能單純用錯誤率較低的機器學習類神經網路取代,因為只要出現一隻黑天鵝,就可以否決所有天鵝都是白色的論點⋯⋯。

本文由楊建銘授權轉載自其風傳媒專欄。

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

關鍵字: #人工智慧
往下滑看下一篇文章
橘子集團 Vyin AI × 女媧創造攜手推出「居家陪伴機器人」,開啟機器人大腦 RIaaS 商業應用新局!
橘子集團 Vyin AI × 女媧創造攜手推出「居家陪伴機器人」,開啟機器人大腦 RIaaS 商業應用新局!

隨著全球勞動力老化與新血招募困難,從製造、零售到醫療與長照,各行各業皆面臨同樣的缺工挑戰,面對人力不足,機器人逐漸走出工廠,進入醫院、門市與家庭。但當生成式 AI 讓機器人不再只是「會動」,而是開始「能懂」時,新的問題隨之而來——我們是否能信任它?

尤其在台灣,隨著2025年正式進入超高齡社會,長照體系首當其衝,人力不足、服務品質不均、家屬壓力沉重,AI 與機器人被期待成為新解方,但即便生成式 AI 浪潮席捲全球,各國際大廠持續精進自家大型語言模型,市場仍缺乏能直接面向C端消費者、大規模商用且精準可控的 AI。

「很多機器人廠商強調的是功能能做什麼,但如果長者不願意互動,再多的功能都沒有意義。」橘子集團策略長暨 Vyin AI 負責人陳冠宇指出,「接觸點不成立,後面所有服務都用不上。而那個接觸點,就是可信任的聊天與陪伴。」

這樣的觀察,也成為 Vyin AI 切入發展「機器人大腦即服務(Robot Intelligence as a Service, RIaaS)」的契機。

在9月底舉辦的台北國際照護博覽會中,Vyin AI 宣布攜手台灣機器人新創女媧創造,搶先展示共同打造的居家陪伴型 AI 機器人「Gilee 桔利 」。結合 Vyin AI 核心技術 Vyin Brain 智慧中樞與女媧創造的機器人互動設計,展現 AI 機器人從「任務驅動(task-based)」邁向「語意與情境驅動(context-based)」的可能性。

橘子集團
橘子集團旗下生成式 AI 新創 Vyin AI 攜手女媧創造,於 2025 台北國際照顧博覽會展示「可控 AI × 機器人」應用,透過居家陪伴機器人 Gilee 桔利,展現可控 AI 理解語意、感知情緒並標記風險,揭示機器人大腦即服務(Robot Intelligence as a Service, RIaaS)的未來方向。橘子集團策略長暨 Vyin AI 負責人陳冠宇(左)與女媧創造營運長張智傑(右),分享機器人特點。
圖/ 橘子集團

從長照產業切入 以「可控 AI 大腦」打造能被信任的陪伴

女媧創造耕耘陪伴型機器人多年,擅長機器外觀設計及互動體驗,但在長照領域的推廣仍多停留在試行階段。營運長張智傑表示:「要守護長者的健康、撫慰孤獨長輩的孤獨感,光靠形體與互動還不夠,更需要一個可靠的大腦。」

過去的照護型機器人大多停留在衛教知識宣導或生理監測階段,缺乏與使用者互動的能力。面對照護需求快速攀升與人力斷層,雙方都意識到,若 AI 要真正走進家庭與長照現場,「信任」將是唯一關鍵。而對 Vyin AI 而言,這正是可控 AI 發揮價值的最佳場域。

陳冠宇指出,自大型語言模型(LLM)問世以來,雖展現出驚人的語意生成、邏輯推理與知識應用能力,但其核心仍屬於機率預測模型,本質上是透過複雜的機率計算模擬人類語言分布,即使經過人為的情境工程(context engineering)的修正,仍難完全避免「AI 幻覺」的發生。「在一般應用場景中,幻覺頂多造成資訊錯誤,但在醫療與照護產業,錯誤的回答可能直接影響生命安全。」

相較之下,Vyin AI 研發的智慧中樞 Vyin Brain 採用獨創的仿生大腦架構,由「語言、知識、理解、動作」四大中樞分工協作,層層把關 AI 的思考與回應流程。另外可將醫療、零售、教育等專業領域的資料轉化為透明的知識圖譜,建立清晰的知識邊界,確保所有回應均具可追溯性、可驗證性與可解釋性,最大程度的消除 AI 幻覺風險,讓生成式 AI 在需要高度精準與信任的場景中得以安全落地。

橘子集團
台北國際照護博覽會中,桔利的初登場,引起大眾的好奇與關注,詢問與體驗絡繹不絕。
圖/ 橘子集團

讓機器人更像人:客製化設定與長期記憶,讓長輩感受理解

首度亮相的桔利,以活潑童語與長輩對話:「爺爺,今天有什麼開心的事嗎?」「奶奶,妳該吃高血壓的藥囉!」展區人潮絡繹不絕,將 Vyin AI 的展攤擠得水洩不通,中化銀髮總經理李宗勇及團隊親自體驗後,更是對桔利讚不絕口,直言這位 AI 金孫外型討喜,是長輩絕佳的陪伴者。

事實上,被設定為「10歲金孫」的桔利,不僅能理解長者的語意與意圖,陪他們閒聊、安排行程、提醒用藥,還能透過長期記憶與個人化設定,根據長者的個性、家庭與健康狀況調整互動內容,主動引導長者分享興趣、回憶過往,甚至向他們請益,讓長者在互動中感受到被理解、被需要,進而產生「情感價值」。

相較多數廠商強調的是「生理監測」功能,桔利更重視的是「情感陪伴」。負責桔利產品功能設計與規劃的產品經理 蔣欣諭 補充,在傳統華人文化中,子女常羞於直接表達愛與關懷,因此設計出「專屬家人的 AI 仿聲語音信」功能。

子女只需透過專屬 App 輸入文字訊息,桔利便能以 AI 仿聲技術,轉換成兒女或孫子的聲音唸給長輩聽。這項功能在現場引發驚喜與共鳴,它觸動的不只是科技的體驗,而是家人之間「說不出口的愛」。

在日常生活中,桔利也具備智慧照護的即時偵測能力。會在對話中持續判斷語氣與內容的變化,進行風險標記。若偵測到異常,會透過女媧的通報系統推播給家屬,並依照情況分級提醒,且所有對話內容都會被自動收錄於後台,以簡潔明瞭的儀表板呈現,讓家屬與照護人員能快速掌握長者近期的身心理狀況。

「我們設計桔利的目的,不是取代家人,而是成為家屬與長者之間的橋樑。」她說。

從長照出發,邁向多元 RIaaS 生態

桔利在照護博覽會的初登場,不僅引發長輩熱烈回應,也為 Vyin AI 與女媧創造的合作奠定良好開局。對團隊而言,這不只是一次成功的展出,更是「情感連結」價值的具體驗證,同時也證明雙方在軟硬整合上的實力。

「我們從長照出發,是因為這是最難的場域,能最大化檢驗技術的可控性與穩定度,凸顯我們技術的價值。」Vyin AI 負責人陳冠宇表示。

除了以可控 AI 大腦杜絕幻覺外,要讓機器人能像人一樣反應,關鍵不只是速度,更在於整合。要達到像人一樣的回應速度與精準度,必須同時整合語音辨識(ASR)、語意理解、知識調用與語音合成(TTS)四層技術。「這不只是速度問題,更是理解與反應的平衡,這種全鏈路整合能力,就是我們最重要的護城河。」

陳冠宇透露,目前雙方正持續開發的全鏈路版本,預計於明年第一季推出,屆時回應時間將縮短至三秒內,讓人機互動更自然流暢。於此同時,團隊正推進「機器人大腦即服務(RIaaS)」模式,將同樣的可控 AI 能力延伸至零售、教育與照顧產業等領域。

RIaaS:Robot Intelligence as a Service 機器人大腦即服務.jpg
橘子集團旗下 Vyin AI從長照出發,希望以最難的場域開始,最大化檢驗技術的可控性與穩定度,邁向多元 RIaaS 生態。
圖/ 橘子集團

以零售為例,Vyin AI 自研的 D-RAG(DistilGraph RAG) 技術,可自動整合商品規格、客服紀錄或保健品資訊等非結構化資料,轉化為可即時調用的知識圖譜,讓機器人能在銷售、客服或導覽場景中快速回應顧客問題,提供準確建議,甚至根據互動內容動態導購、推薦商品,並在適當時機「轉真人」接手,協助品牌提升轉換效率。

同樣的架構,也能延伸至教育、照顧產業與智慧導覽等多種場景,讓機器人化身銷售助理、賣場導覽員、教學助教,根據使用者需求與語境,自動生成可信任的回應與互動體驗。「只要運用 Vyin AI 解決幻覺問題,『機器人即服務』的時代就會正式來臨。」陳冠宇說

他進一步指出,全球市場已對 RIaaS 商業模式產生迫切需求,Vyin AI 憑藉可控 AI 大腦的技術優勢,正積極布局海外市場。「我們希望透過 RIaaS,把這套可控 AI 大腦服務化,讓各行各業都能快速導入可信任的 AI 機器人,不只是替代人力,而是打造溫度的互動,讓未來的人機合作更加順暢、緊密。」

立即了解更多 Vyin AI 解決方案

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓