人工智慧與1%問題
人工智慧與1%問題

現在氣勢旺盛的人工智慧技術,是以機器學習類神經網路為主流的。雖然募資中的創業家和不同投資哲學的風險資本家滿嘴都是人工智慧,彷彿世界上所有的問題都即將被人工智慧解決,但機器學習本質上並不適合我常說的「1%問題」(1% problem)。

我所謂的「1%問題」,是指雖然只有極低的機率會出現極端狀況,但一但出現極端狀況,其後果往往非常嚴重,以致於讓整體回報期望值跌落為負值。

簡單以數學解釋的話,我們可以假設一個抽籤遊戲。籤筒中有99隻白籤和1隻黑籤,抽中白籤的話可以得到美金$100,抽中黑籤則得賠美金$9,900,那麼這個抽籤遊戲的淨回報期望值為美金$0:

99% × $100 + 1% × (−$9,900)=$0

基本上這是一個不賺也不賠的遊戲,理性的金融思考邏輯下,任何人都不應該玩這個遊戲,因為期望回報為$0,但波動性大於0(有99%機會可能賺錢、有1%機會可能賠錢),比起啥都不做(波動性為0)就可以穩穩的賺到(或賠掉)$0來說應該是一個比較不具吸引力的遊戲。

如果上面這個遊戲在抽到黑籤時必須要賠出超過$9,900的金額,遊戲的回報期望值就會變成負值,成為一個不管什麼狀況下,理性的金融人都不應該參與的遊戲。

接下來,我們把這個99%正確率的場景對應到影像辨識,也正是機器學習最早出現突破的範疇。

類神經網路的主要演算法其實在很早以前就已經存在,但實際的應用很有限,除了現任臉書AI長的Yann LeCun大神當年在貝爾實驗室開發的支票手寫辨識機器得到廣泛的運用以外,大部分通用影像辨識仍然錯誤率很高而且速度奇慢無比。

二十一世紀前十年,關於電腦永遠無法擊敗人腦的說法常常採用一個簡單的例子:人類的小孩沒什麼知識,但只要看過貓這種動物幾次,不用特別學習就可以十拿九穩地辨認出任何外貌的貓來,但這麼簡單的問題電腦卻常常掙扎半天還是頻頻出錯。

檢視現有機器學習式的人工智慧一個大陷阱

但是在研究者發現使用繪圖晶片(GPU)進行類神經網路運算的速度,遠比用中央處理器(CPU)快很多後,事情開始有了爆發性的進展。2012年的ImageNet影像辨識大賽(ILSVRC,ImageNet Large Scale Visual Recognition Challenge)中,一個深層卷積網路達成16%的辨識錯誤率,兩年後的贏家則一舉突破10%來到7%,隔年2015年年底,機器終於超越人類平均5%錯誤率的辨識能力來到3.6%,2017年的ILSVRC大賽的38支隊伍裡更是有高達29支都成功摜破5%——看來在各種影像辨識的任務中,使用任勞任怨的機器取代任性的人類已經是不可逆的進程?

但是以上的論述中都只討論到錯誤的機率,並沒有討論到各種不同的場景的後果,這裡我們要引入剛才定義的「1%問題」,來檢視現有機器學習式的人工智慧系統一個很大的陷阱。

中國學校課堂中將安裝「慧眼(smart eye)」.jpg
中國學校課堂中將安裝「慧眼(smart eye)」,上課恍神、不專心通通逃不過機器法眼,透過人臉辨識監控學生專心程度,還會被列為成績評量依據。
圖/ unsplash

場景一:傳統保全

傳統保全使用人類實況監看保全攝影系統,電影或電視影集中也常常出現這樣的場景:兩三個穿著警衛或警察制服的人盯著十幾個分割螢幕,結果一聊天分心,讓正義的夥伴或者變態殺人狂成功避過監視進入保全區域。

保全不可能做到100%毫無疏漏,因此這門生意本來就是機率問題。聘用更多人監看電視就可以降低疏漏率,但是邊際效用下降,成本上升。在保戶能夠接受的費用範圍內,保全用戶和保全公司在合約的框架下接受一定的總體疏漏機率,在上面追加同樣是機率問題的保險制度和再保制度,從而得到一個可行的生意模式。

如果使用影像辨識系統來取代坐在螢幕前監看的人類,成本多半可以降低,而且疏漏率更是遠比會打瞌睡和偷懶的人類低。因此保全用戶可以享受更高的安全,保全公司也有機會賺到更多的錢,儘管疏漏率仍然不會降到0%。

這是一個真正有用的機器學習應用場景。

場景二:行事曆自動排程

我們風險資本家的每天的日常就是一場接著一場的會議,但是不同於企業內部會議只要排時間,我們的會議是四散在各地,中間穿雜著各種電話會議,外加大量的外地出差,這表示跟會議對象確認會議時間排進行事曆是一個非常耗時的事情,郵件一來一回可能花兩天都還排不好一場會議。

傳統的解決方案是聘用秘書或者助理,好的秘書或者助理會根據會議重要性、敏感性、時區、合夥人飛行狀況、班機延誤風險⋯⋯等各種因素,來和對方進行適當的會議時間、地點和方式協商。

當然這樣等級的秘書或者助理很貴,不是大家都負擔得起的,我自己常常遇到會議對象的秘書其實都不那麼專業(也就是不那麼貴),把事情搞砸的次數也不算少。我們自己Hardware Club因為旗下管理基金總規模還不大,所以並沒有特別編列聘用秘書或助理的預算,大多是合夥人自己排程,也因此在巴黎辦公室,很多時候晚上公司年輕同仁們都下班了,卻還看得到合夥人在這較不花大腦的時段回著郵件,排著下趟出差的會議。

因此我可以理解當年多家知名風險管理公司們——包含DCM VenturesFirstMark CapitalTwo Sigma Ventures和願景基金成立之前的軟銀資本(Softbank Capital)等——進行投資並大肆吹捧x.ai這間位於紐約的新創。

x.ai使用機器學習,用電腦秘書自動分析來信內容,並以自然語言回信請求安排會議,然後根據對方回應的文字內容(時間衝突、地點衝突、時區錯誤⋯⋯等)進行新的時間和地點提案,最後成功達成共識後就自動登錄進使用者的行事曆。

最終理想狀態是機器跟機器對話,因為這樣一來就不需要分析自然語言,可以直接對行事曆和交換變數。但是在抵達這個境界之前,一定會有很多狀況是機器跟人對話,不管是跟當事人還是跟秘書或助理,所以能夠理解前因後果和對話背景的自然語言人工智慧能力就變得很重要。

但在我看來,x.ai的商業考量從第一天開始就有邏輯上的缺陷:會忙到需要秘書或助理幫忙協調行事曆的人,正是因為行事曆項目又多又重要,才會連貓的爪子也想借來用。也只有這樣的人有誘因去使用x.ai的系統,希望能降低一些成本。

但類神經網路機器學習基本上是一個從很大的輸入輸出資料庫,提煉出以簡馭繁的模型的方法,是一個縮減資訊量的過程,理論上不可能達到100%正確,永遠都會有錯誤或搞砸的部分。如果是剛剛保全系統的使用情境,因為保全用戶是分散的,觸發保全系統的犯罪行為也是分散的,因此只要維持整個系統的事件機率低於原本使用人類兼看的系統的機率,人工智慧的應用就是有意義的。

但是在本使用情境中,x.ai或者其他自動行事曆排程系統,就算做到99%正確、比一般律師和助理更可靠,也不見得有意義,因為只要搞錯或搞砸的那1%行事曆事項是非常關鍵的人事物(例如:有意投資基金的機構法人、打算收購公司的大企業執行長等),可能導致的損失會遠遠蓋過之前因為換成機器而節省下來的金額。

我可以理解為什麼分身乏術的風險資本家,有可能因為自己排會議的痛苦經驗,而決定自動排程行事曆是一個很棒的商業點子,又遇到很厲害的人工智慧創業家,因此決定投資。但是我高度懷疑這些風險資本家,今日自己是否仍然仰賴這樣的軟體服務來安排自己的行程 —— 因為我實在無法想像當一個風險資本家跟基金投資人重要的會議被安排錯誤時,他可以接受「平均起來這種錯誤的機率比人類低」的藉口。

美國亞利桑那州坦佩市曾傳出Uber全自動駕駛汽車撞死行人的交通意外.jpg
美國亞利桑那州坦佩市曾傳出Uber全自動駕駛汽車撞死行人的交通意外。
圖/ 美聯社

場景三:自動駕駛

上面所提的「平均起來這種錯誤的機率比人類低」,將我們帶到了目前1%問題可能最嚴重、但偏偏卻又是各方矚目重金押注的場景:自動駕駛。

兩年前,當特斯拉首次有用戶因為使用自動駕駛而遇難時,莫斯克在推文上表示特斯拉的肇事死亡率仍然遠低於一般汽車市場總體統計數據,暗示特斯拉的自動駕駛系統在平均來說是比人類駕駛好的,所以不應該被責怪。

但這種很典型的、看似很理性的工程師邏輯忽略了一件很重要的事情:當一百個人開著一百台車,因駕駛人的問題發生一件致死車禍時,其他的九十九人和九十九台車並不會被一概而論。換言之,這個系統是分散的,每個駕駛人互相獨立不相干。整體來說只要肇事率維持在1%,系統並不會被咎責。

但如果是特斯拉所提供的自動駕駛有著1%的肇事率,那就不是一個分散式系統問題,而是一個中央系統的問題,被咎責的是包含其他九十九台安全無恙的車子在內,總共一百台的數量,可能導致的賠償金或者刑罰也是根據一百台計算。

君不見2009年美國豐田汽車暴衝致死事件,除了造成大量召回以及車廠經濟損失,豐田家族繼承人也被拖到美國國會面前羞辱,更甭提品牌受到的重創。十個月後當調查結果終於出爐,正式排除豐田的責任,並將多數相關事件的肇事原因歸屬於駕駛人,但這時對豐田的永久性傷害已經造成。

同理,特斯拉(或者任何車廠的)自動駕駛系統,目標也不能僅僅是肇事率低於大眾平均,而是要做到更低的數量級,才能避免1%問題導致全盤皆輸。

結論

機器學習類神經網路本質上是一個或然率的系統,用來顛覆原本就是建立在或然率上的商業(例如偵測信用卡盜刷),是非常適合的,因為只要人工智慧的表現能夠比既有的或然率優異,業主就能實現更低成本和更高獲利。

但如果或然率是結果,而且本質上存在「1%問題」(單一事件可能導致巨大損失),那麼就不能單純用錯誤率較低的機器學習類神經網路取代,因為只要出現一隻黑天鵝,就可以否決所有天鵝都是白色的論點⋯⋯。

本文由楊建銘授權轉載自其風傳媒專欄。

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

關鍵字: #人工智慧
往下滑看下一篇文章
突破傳統信用卡模式!國泰世華如何重塑刷卡體驗,養出百萬CUBE切換忠實粉?
突破傳統信用卡模式!國泰世華如何重塑刷卡體驗,養出百萬CUBE切換忠實粉?

根據聯合徵信中心統計,國人平均每人持有約4張信用卡,雖反映出信用卡普及,卻也暴露市場飽和的現實。當回饋比例、聯名優惠成為銀行發卡標配,差異化日漸縮小,消費者對單一卡片的忠誠度也難逃下滑。

面對同質化競爭困境,國泰世華銀行四年前即推出CUBE信用卡,首創「數位自選」權益機制,讓使用者能依需求自由切換權益回饋,成功累積百萬卡友。然而,當使用者習慣隨手調整回饋後,國泰世華又該如何進一步突破,讓廣大「CUBE切換忠實粉」更黏?

數位平台成熟度,撐起「權益自選」創新機制

「以前一張信用卡就是固定型態的權益,或綁定單一聯名夥伴。而權益自選的設計,讓信用卡不再那麼制式、更加靈活!」

國泰世華銀行數位長陳冠學指出,CUBE 卡最大的突破,是將信用卡從「靜態工具」轉化為「動態平台」。搭配CUBE App卡友可依需求隨時切換:餐廳用餐或假日逛百貨公司選「樂饗購」、出國旅遊則切換至「趣旅行」享旅遊或交通優惠;一張卡橫跨多種生活場景,甚至能依個人偏好即時調整,客戶更能於商家請款後透過CUBE App查詢點數回饋明細,對精打細算的卡友格外具有吸引力。

然而,要實現如此彈性靈活上下架權益與優惠,背後的挑戰遠比表面複雜。陳冠學直言:「若沒有成熟的數位平台作為基礎,根本不可能實現。」傳統信用卡只需處理單卡簽帳與消費紀錄,但 CUBE 必須同時滿足龐大客群的多元需求,從數據分析到營運模式都得全面升級。唯有在技術架構上徹底重建,才能實現這種前所未有的產品邏輯。

因此,CUBE 信用卡並不只是單一產品的創新,也可以說是推動國泰世華數位平台進化的重要里程碑。

國泰世華銀行數位長陳冠學
國泰世華銀行數位長陳冠學指出,唯有成熟的數位平台,才能撐起CUBE信用卡「權益自選」的創新機制。
圖/ 數位時代

因為靈活,得以開啟平台化服務的想像

打開 CUBE App、彈性切換CUBE信用卡權益方案,甚至查看領取不同商家的回饋加碼優惠券,這種互動式體驗已成為百萬卡友的日常。但國泰世華並未止步於此,而是思考如何進一步延伸金融場景。

「許多權益的設計並不只是為了增加交易,而是基於人性化洞察,去滿足客戶更深層的需求。」陳冠學舉例,如CUBE信用卡「童樂匯」權益,針對親子族群推出涵蓋餐廳、嬰幼童品牌、五感體驗課程等六大通路的專屬權益,最高可享 10% 小樹點回饋,甚至指定私校學費也提供領券最高 3% 回饋。雖然少子化趨勢讓親子族群相對小眾,但陳冠學則有不同觀點:「服務客戶的下一代,也是長遠經營的投資。」

除了分眾經營,對於聯名卡的發行,陳冠學則認為:「過去,聯名卡是會員身份的象徵,但在數位時代,攜帶多張會員卡的需求已經弱化。我們透過不同合作模式,仍能達到同樣的客群經營效果。」

於是,國泰世華與多元場景通路如 Uber、Klook、大樹藥局、臺虎展開不同形式的深度合作。對合作通路而言具備「品牌強強聯手」的導客效應,對國泰世華來說,則更能觸及多元分眾市場,跳脫單一品牌聯名的侷限,信用卡也因此從支付工具延伸出更多服務優勢。

當信用卡升級為集結服務的平台,國泰世華不僅打造互利共生的生態圈,對外創造多贏合作,對客戶也深化品牌連結,逐步鞏固難以取代的黏著度。

新聞照.jpg
CUBE信用卡結合App數位自選權益,讓用戶依需求即時調整回饋,展現靈活又直覺的數位金融體驗。
圖/ 國泰世華

從一張卡到點數生態圈,國泰世華打造CUBE尊榮會員感

「跳脫信用卡本位主義,不再侷限於刷卡回饋,而是從整體金融與生活情境出發,將服務轉化為跨情境串聯的完整旅程。」陳冠學強調,CUBE 品牌的使命,就是做到跨情境、跨服務、跨子公司的一站式體驗。

而國泰優惠 CUBE Rewards App 的出現即是里程碑。從原先 MyRewards 升級為 CUBE Rewards App,不只功能升級,也是品牌再造,把 CUBE 信用卡與國泰集團「小樹點」完整串連,將會員經營、點數生態圈與 CUBE 品牌價值一站打通。

「我們讓 CUBE 不只是信用卡,更像是俱樂部般的尊榮體驗。」憑藉國泰龐大的小樹點基礎與優質卡友群,CUBE 對合作品牌展現強大吸引力,得以不斷拓展餐飲、旅遊到藝文等場景,更突破點數僅能折抵帳單的模式,讓卡友能用點數兌換熱門演唱會、運動賽事門票,甚至搶先預訂話題熱門餐廳等限量體驗。

「我們希望讓客戶覺得:哇,你又找到我的需求了!」陳冠學說。把細微偏好化為具體體驗,正是 CUBE 平台能不斷創造驚喜的關鍵。四年來,CUBE 以「1+N」權益架構結合雙 App,已累積超過 600 萬卡,為國內發卡量最大的單一信用卡;累計2025 年前 7 月,簽帳金額達 4,889 億元,年增 11%,寫下亮眼成績。

但對國泰世華而言,數字只是過程,真正的目標應如陳冠學所言:「信用卡不該再有框架,CUBE 要做的,就是以洞察與創造,帶給客戶超乎想像的個人化體驗。」

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓