麥當勞正在秘密測試點餐、炸薯條機器人,要用AI取代高重複性工作
麥當勞正在秘密測試點餐、炸薯條機器人,要用AI取代高重複性工作

麥當勞正迎來一場客服和廚房革命。

據《華爾街日報》報導,麥當勞正在美國芝加哥郊區測試一些創新想法。他們將在得來速(Drive-through)跟顧客對話點單的員工換成了一套AI語音識別系統;而在後廚炸薯條、炸雞塊的則變成了「機器人廚師」。

現場測試,AI辨識還算順暢

為了提高餐飲服務速度,提升顧客的體驗,將油炸工作這一工作交給機器人,也能降低真人員工受傷的風險。

記者在現場體驗後發現,AI點單的過程比想像中更流暢得多。系統像日常一樣詢問「歡迎來到麥當勞,請問想要吃些什麼呢?」隨後將顧客的訂單內容顯示在電子螢幕上,甚至連「漢堡裡不要放生菜」這種特殊要求都能處理好。

不過AI語音系統還說不上完美。現場一位顧客對著菜單猶豫不決時間過長難倒了系統,最終需要麥當勞員工「出手相助」。

而從麥當勞公佈的影片可以知道,讓機器掌控油炸環節後,員工不再需要時刻盯著時間和溫度,只需要對炸好的薯條和雞塊等進行簡單包裝。

負責技術創新的麥當勞高級副總裁梅森·史慕特(Mason Smoot)指出,這些技術並不是為了取代真人員工,而是為了減輕他們的壓力,並表示很快將會推廣到其他門店進行試用。

官方新聞稿表示,此前麥當勞已經透過門市的自助點餐機、手機下單、麥樂送和跟Uber Eats合作外賣等方式來提升顧客的體驗,這次則是要提升廚房流程,將重複性工作交給自動化設備,讓員工能更好地關注到顧客的需求。

除了AI語音點餐系統和「機器人廚師」,未來麥當勞還將對自動飲料設備進行測試。

麥當勞
圖/ 愛范兒

全球速食連鎖餐廳相繼投入科技革新

把漢堡賣到世界各地的麥當勞,如今越來越像是一家科技公司了。從2017年開始,麥當勞啟動「速度成長計劃」(Velocity Growth Plan),旨在透過數位科技提升顧客的用餐體驗和便利性,創造更多收入。

今年3月,麥當勞花3億美元收購人工智慧公司Dynamic Yield,為菜單引入個性化推薦技術,讓餐廳得以根據天氣、時間段和顧客的點餐記錄等來調整菜單推薦。譬如,在夏天推薦冰品,在冷颼颼的天氣裡推薦熱咖啡。

事實上,整個餐飲行業都投入技術革新。Sonic Drive-in和Good Time Burgers等美國連鎖餐廳在測試跟麥當勞類似的AI語音系統,據稱,相關技術可以讓平均等待時間縮短7秒,80%的顧客表示比較滿意。

Domino's Pizza正在澳大利亞和新西蘭地區測試AI科技,對每個新鮮出爐的披薩進行掃描,確保它的大小、用料等都達到品質標準。

麥當勞的首席財務官凱文·奧贊(Kevin Ozan)指出「過去我們認為科技只是輔助業務,但現在它們為業務帶來成長。」數據顯示,目前全球近1.7萬家麥當勞門市都在使用自助點餐機,這一管道已經佔麥當勞到店交易的90%。而歡樂送也在過去兩年變成規模達到30億美元的業務,訂單量佔總量約70%。

本文授權字:愛范兒

往下滑看下一篇文章
終於出現「看得懂的保險」!國泰人壽以「保險視圖」引領資訊透明革命
終於出現「看得懂的保險」!國泰人壽以「保險視圖」引領資訊透明革命

在台灣,多數人的第一份保障來得很早,可能來自父母,或是出社會後自行投保。然而,直到今天仍有許多人即使手握數張保單,仍說不清自己到底保了什麼。條款繁複、名詞艱澀,導致投保當下似懂非懂,過一陣子就全忘了。保險資訊的不透明,讓風險管理變成了一場全憑印象、依賴業務員的信任遊戲。

自從國泰人壽推出 App 3.0,以「陪伴」重塑保戶與保險的關係,下一步,更要讓資訊變得透明、易讀、好上手。於是,「保險視圖」誕生了—由國泰人壽戰情室 diLab(Digital Insurance Lab)領軍打造的這個平台,試圖翻轉保單難懂的問題,將散落於規範、條款與系統的資訊重新整理、轉譯與可視化,讓保戶終於能「一圖看懂」保障全貌。

「我們希望做到的不只是查詢工具,而是讓保戶真正理解風險、開始做決定。」diLab 經理林蔚安說,這項專案從發想到上線歷時多年,可說是完成了連同業都不敢想像的艱鉅任務。這場透明革命如何開始?國泰人壽又如何讓這個看似困難的挑戰落地?

資訊透明:讓保險回到能被理解的語言

「保險商品本身就很複雜,很多人買了保險,打開保單還是看不懂。」林蔚安指出,國泰人壽累積 800 萬保戶,團隊在梳理客戶旅程時發現,即使擁有多年的資歷與服務經驗,卻未能讓保戶更清楚自己的保障;大多僅在與業務員討論時略有概念,事後又陷入陌生感。因此,「保險視圖」的構想,就是要讓保戶能在同一平台掌握所有保障與資產資訊。

數位時代
diLab 經理林蔚安與團隊歷時打磨領先業界的保險視圖,幫助保戶一次看懂保障。
圖/ 數位時代

第一步,是處理「看不懂」這件事。diLab 從資料盤點開始,依照生涯階段與保障屬性,將保單內容重新分為「我的健康照護」、「我的保險資產」、與「我的壽險傳承」三大方向,讓保戶以更貼近日常的邏輯理解保障結構,例如「住院時有哪些保障?」。

「調研時發現,國內幾乎沒有成熟案例可參考,國外雖有概念但差異極大。」林蔚安表示,圖表複雜,反而增加理解負擔,因此團隊反覆推敲呈現方式,「要放什麼、怎麼放、放到什麼程度,光這個架構就討論了數個月!」每一個看似微小的改變,背後都是無數次的反覆測試與訪談,「我們帶著不同版本的草稿詢問保戶,在沒有業務員引導下是否看得懂。」最終,團隊定調以金字塔結構建構視圖基礎,從保戶自己的健康保障,到未來可運用的累積資產,最終到照顧家人的壽險傳承。沒有看似花俏的圖表,只希望讓多數保戶好理解的簡單呈現。

但挑戰不只在前端設計,還有保險條款轉譯。傳統保單以商品邏輯分類,與使用者思考「何時會用到」的方式完全不同。為了讓資訊更貼近生活情境,「保險視圖」不再以條款分類,而以場景情境作為基準。例如保戶生病住院時,介面會按照基礎醫療、意外、癌症、重大疾病、長照與壽險等六大結構分層呈現,先呈現核心,再逐層深化,視覺化整體保障全貌,並同步提供現金價值與現金流資訊,形成一套完整的理解脈絡。

風險洞察:AI協助人們看清保障缺口

國泰人壽
視覺化保障達成率,一眼了解保障缺口。
圖/ 國泰人壽
國泰人壽
提供熱門推薦與更加個人化的AI推薦,喚醒補強意識。
圖/ 國泰人壽

當保險資訊透過直覺式的設計變得透明,下一個挑戰就是讓保戶理解「自己目前的保障夠不夠」。

因此「保險視圖」也導入保障目標試算功能,保戶只需回答幾題簡單問題,如:住院希望住單人房或雙人房、對疾病治療的費用承受度等,系統即可推算個人的保障目標。接著,AI 會即時計算保障達成率與缺口比例,將複雜的理賠與條款結構轉換成直覺的百分比。「醫療保障達成率 60%」、「癌症保障達成率 45%」,藉由直觀的數字圖表呈現,讓保戶能一眼看出自己保障的完整程度。

此外,平台不只呈現差距,還會以情境推估可能的支出。例如住院五天、手術一次的費用與實際理賠差異,讓保戶真正感受到風險的具體樣貌。「保戶不再是聽到『癌症住院很貴』這種抽象說法,而是看得到具體數字。」透過以場景為基礎的推算,使保戶終於能對模糊的風險概念有畫面,並對理賠內容有更直觀的理解。

平台也提供「熱門推薦」與「 AI 推薦」兩種建議模式。前者以性別、年齡作為分析基礎,後者則依個人資料與既有保單做更客製化的配置。保戶可在平台初步理解現況後,再與業務員討論,透過數位賦能、與有溫度的人性服務建立互補機制,也讓業務溝通更聚焦、更有效率。

領航轉型:戰情室以創新實踐「以人為本」

保險視圖歷經多次迭代上線,雖仍在推廣階段,但初步成效已浮現。以今年 4 月關稅議題為例,資產型保單查詢需求明顯攀升,保戶登入次數從每週平均 4 萬次提升到 5 萬 6 千次,大幅成長40%。以往查詢保單價值需透過業務員協助或臨櫃辦理,如今登入平台即可取得資訊。

國泰人壽
保險視圖一次呈現保戶的整體保險資產,建立更清晰的財務健康圖像。
圖/ 國泰人壽

此外,視覺化呈現保障缺口後,有保戶回饋「看到達成率 70%,就想補到 100%」,顯示視覺化真正促進了主動管理的行為轉換。

數位時代
diLab 戰情室跨商品、設計與數據協作,以使用者為中心反覆驗證,用心設計保險資訊呈現方式。
圖/ 數位時代

能完成一份視覺化介面不難,但能把 60 多年累積的保險商品結構、條款邏輯與資料系統重新整合再轉譯,背後極度仰賴組織文化。尤其,保險視圖的誕生,從構想到落地,專案歷時 4 年,期間國泰以「區塊化堆疊」的方式逐步發展服務功能,包括資產總覽、健康與壽險視圖、缺口試算與 AI 推薦,每一步都需要長時間協作與反覆推敲。

林蔚安形容:「戰情室就像加速器。」其角色是串聯商品、數據、數位、UI與UX設計、開發工程與行銷等多個團隊,以使用者中心作為共通語言,讓跨部門能在同一個目標下推進。「大家的專業不同,但只要目標一致,就能共同前進!」

數位時代
專案歷時多年,團隊成功以敏捷方式快速迭代,實現保險資訊透明化。
圖/ 數位時代

展望未來,透明化只是起點。林蔚安指出,下一步是讓更多保戶願意使用平台,使行為軌跡形成數據基礎,再透過個人化推播與 App 串接,發展國泰人壽保戶更完整的數位體驗。「這條路很難,但值得做。」他分享,有一次泰國人壽數位團隊來台交流,第一眼看到保險視圖就說:「這真的很不容易。」但也因此,更突顯國泰人壽勇於創新、以人為本的服務精神。同時,保險視圖也不會是終點,卻會是打開未來保險模式的一把關鍵鑰匙。國泰人壽以具體行動落實「Better Together 共創更好」,在每一項細節中重塑保險服務的日常價值。

保險視圖:https://cathaylife.tw/VoeoOdb

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓