AI換臉的偽造影片到處流竄,識別造假的軍備競賽開打
AI換臉的偽造影片到處流竄,識別造假的軍備競賽開打

Deepfake自問世以來,一路向著人性陰暗面奔去。

民間技術流已經對AI換臉教程玩得不亦樂乎。但每個人也更容易成為受害者:偽造綁架影片勒索詐騙,不雅影片毀壞名譽,或者恐怖影片製造混亂,都因為Deepfake的開源技術變得空前容易。

Deepfake2
讓一眾名人換上美國前總統布希的面部動作圖TED
圖/ 品玩

在Photoshop摧毀了大眾對圖片的信任後,Deepfake正在摧毀大眾對影片的信任。沒人想在網路上看到自己的面孔說著自己沒說過的話。許多針對個人的傷害,也因為影響不夠巨大而投訴無門。

美國正在組成一支Deepfake打假隊伍,不僅是各大實驗室、研究中心在尋找Deepfake的破綻,一股創業潮流也正在興起。

但這是一場造假AI與鑑假AI之間「你有張良計,我有過牆梯」的競賽。每一篇檢測Deepfake的論文,彷彿都能提示造假技術修補自身漏洞,從而更上一層樓。

關上Deepfake的潘朵拉魔盒,他們能做到嗎?

用打假Deepfake創業

西瓦.金塔利(Shiva Kintali)離開擔任講師4年的普林斯頓資工系,正在矽谷創業鑑別偽造影片。他的合作對像有警察、記者、保險公司等,透過機器學習尋找偽造影片的破綻,用區塊鏈記錄信息等技術來輔助鑑別。

金塔利的網站已經可以上傳圖像、音樂、影片,來分析檢測是否有修改痕跡。他同時在開發一個手機相機應用程式,用人工智慧為圖像添加時間、地點、浮水印,並將圖片原始信息印在區塊鏈上。一旦傳播圖像的信息與原始圖片不符,就容易判斷真偽。

這些產品希望幫助記者、媒體公司、政治競選團體、執法機構(例如:FBI、NSA),保險公司(面臨虛假事故照片的保險索賠問題)和大公司(例如:Facebook、Twitter、Redditt、Pornhub),在其平台上阻止虛假的影片、音樂、照片傳播。

由於Deepfake降低了影片造假的門檻。面對真偽難辨的影像資料,記者不知道能否發布,保險公司不知是應該理賠還是報警詐騙,警察收集證據後,也需要專業工具去鑑定圖片和影片的真偽。

目前流傳的假影片大多是「淺度造假」,但因為數量多,造成了無數困擾。史丹佛的研究人員向鑑別公司了解到困擾他們的三大問題:數量太多,可用鑑別時間太短,缺乏標準化的工具。

因此,研究者們在尋找能夠大規模應用的打假方法。Facebook、Twitter等社交網絡上爆炸式傳播的圖片和影像,給闢謠留下的時間窗口越來越短。普通大眾也不可能僱傭專業人士進行鑑別。

搶先商用化的圖像驗證平台Truepic已經上線了一款智慧相機應用。用戶拍下的圖像將上傳至服務器,在創建時對照片和影片進行身份驗證,獲得唯一編碼。相機應用捕獲設備的感測器數據,在傳輸之前加密照片或影片,運行20多個圖像取證測試,並在幾秒鐘內,將圖像的加密簽名印在公共區塊鏈上,使得信息不可被篡改。

這是一種「自證清白」的方式,適用於電子商務平台和公民記者類用戶。如果用戶將圖片發送給接收者,Truepic允許收件人驗證圖像的原點和元資料的完整性。任何二次傳播的多媒體材料,都可以與區塊鏈上的原始信息對比,辨別真假。

在Deepfake的威脅下,鑑定圖片、影片的真實性,都成了相機應用的賣點。但這類以營利為目的的產品又引起了用戶新的隱私擔憂。畢竟,誰能確保Truepic不作惡呢?

演算法打演算法

位於矽谷的史丹佛實驗研究院(SRI International)的AI中心則「以毒攻毒」,用偽造的影片訓練演算法,讓演算能夠更好識別出偽造痕跡。在人們上傳影片到社交網站的時候,平台需要對影片重新編碼。這是一個檢測虛假影片的好時機。

但隨著Deepfake的漏洞日漸優化,用演算法打演算法的難度也日益加大。

打假AI原本就是訓練造假AI的一部分,二者剛好在生成對抗性網路的兩端。一個生成器,一個鑑別器,道高一尺,魔高一丈。

由於Deepfake的技術在於篡改數據,那麼鑑別方則在尋找一切篡改數據的痕跡。一種方法是基於像素的影片檢測,影片其實是成千上萬幀圖片連放,細緻到檢測每個像素的改變痕跡,是一件頗為浩大工程。

此外,偽造的面部表情目前仍有缺陷。偽造的臉部表情往往與其他部分存在不一致,電腦演算可以檢測圖片或影片中的這種不一致。

Deepfake#
加州大學柏克萊分校的研究者比較真假人物的面部差異
圖/ 品玩

舉例而言,初代Deepfake影片中的人物,眨眼的方式都有點奇怪。

紐約州立大學奧爾巴尼分校電腦科學系副教授呂思偉曾撰文表示,成年人的眨眼間隔為2秒到10秒,一次眨眼需要十分之一到十分之四秒。這是正常影片人物應有的眨眼頻率,但很多Deepfake影片的人物沒能做到這一點。

彼時由於缺乏閉眼圖像數據,算法的訓練並不完美,影片人物面孔總有一種「哪裡不對」的不和諧感。

然而,通過閉眼的面部圖像、或使用影片序列進行訓練,可以改善眨眼間隔。虛假影片的質量總會提高,而研究人員需要繼續尋找檢測它們漏洞的方法。

南加大的研究者威爾.阿布達-阿爾瑪基德(Wael Abd-Almageed)表示,社群網路可以使用算法來大規模識別Deepfake。為了實現這一過程的自動化,研究人員首先建立了一個神經網絡,「學習」人類在說話時如何移動的重要特徵。然後,研究人員使用這些參數將偽造影片的堆疊幀輸入AI模型,以檢測隨時間的不一致性。

普渡大學的研究人員也採用了類似的方法,他們認為,隨著訓練模型的Deepfake影片數據量越來越大,模型也會更加精確,更容易檢測出偽造的影片。

美國2020年大選在即,如何阻止Deepfake從低俗娛樂發展到操縱民意,是研究者們最迫切的動力之一。但願一鍵打假的速度,能追上一鍵換臉的速度。

責任編輯:江可萱

本文授權轉載自:PingWest

往下滑看下一篇文章
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?

AI 與數據正快速落地至各行各業,從製造、金融、電信、醫療到零售,應用速度不斷加快。但在每年交易規模至少新台幣 1900 億元的商用地產領域,卻長期受到數據破碎且不透明的限制,只能仰賴人力蒐集資訊,再憑直覺和經驗去解讀資訊、做出決策,使 AI 潛在價值難以真正發揮。為回應產業轉型的核心痛點,方睿科技首度舉辦「商用地產生態系年會 2026 Raise Day」,以開放式平台為核心,串聯專業地產服務商、空間相關企業服務商、產業專業人士等多元角色,勾勒出 B2B 企業服務生態系的全貌,希望能透過科技促進數據流動,為商用地產企業協作模式開啟新的可能性。

方睿科技
方睿科技首度舉辦 2026 Raise Day,以開放式平台為核心串聯多元角色,推動商用地產邁向產業共好的新階段。
圖/ 數位時代

方睿科技雙軌策略,讓 AI 成為商用地產的決策引擎

方睿科技創辦人暨執行長吳健宇指出,在 AI 時代,人應該專注於「最有價值」的工作;然而在商用地產業中,專業人士卻有約 70% 的時間耗費在資料蒐集與整理上,真正用於判斷與決策的時間僅約 10%。方睿科技希望翻轉這樣的時間分配,讓人力從低價值的資料處理中解放,將更多心力投入在判斷、溝通與決策等創造價值的商業活動。

方睿科技
方睿科技創辦人暨執行長 吳健宇
圖/ 數位時代

為此,方睿科技提出兩條實踐路徑。第一條是建構出具備完整性、易用性與進化性的商用地產智慧平台,運用 AI 技術,將過去產業中破碎、非結構化的資料,重塑為可被運算、可驗證的標準化數據,並結合圖表與互動式介面,讓使用者能夠快速得到完整市場資訊,實現「用戶即專家」的目標。

第二條則是推動生態系聯盟,將不動產視為企業服務的核心載體,串聯設計、家具、搬遷、清潔等多元服務夥伴,使空間不再只是靜態標的,而是承載案例、服務與數據回饋的生態系節點。透過生態系夥伴累積的實務資料與服務紀錄,平台得以發展「資料即推薦」模式,推動商用地產從單點交易,邁向可擴張的 B2B 服務網絡。

獨創「資料飛輪」機制,實現用戶即專家目標

在 AI 模型日益普及的當下,真正的競爭關鍵已不在模型本身,而是能否有效率地收集資料、提高資料品質,並將其與實際決策流程緊密結合。為此,方睿科技獨家設計出一個由「資料收集、資料精煉、專家把關、決策反饋」組成的資料飛輪,回應商用地產長期面臨的資料破碎與決策效率低落問題,成為方睿科技實踐願景的第一條路徑。

方睿科技技術長郭彥良進一步說明,資料飛輪機制的運作架構。首先在資料收集階段,必須系統性蒐集公開資料、內部檔案與報告,並透過 AI 協作將圖片等非結構化資訊轉換為可用的結構化數據。接著進入資料精煉,透過資料清洗與實體對齊,將原始資訊從單純的可閱讀升級為可比較、可推論的決策依據。第三步專家把關,則引入不動產專家進行校正與產業判讀,補上模型難以理解的規則與慣例,確保關鍵數據的正確性。最後的決策反饋階段,藉由收集使用者提問與行為,檢視現有資料是否足夠精準,再回到專家校正與補齊流程,使整個系統能隨使用頻率提升而持續進化。

在資料飛輪的運作基礎上,方睿科技正積極研發商用地產智慧平台 PickPeak。郭彥良表示,PickPeak 並非單純的物件搜尋工具,而是結合深度資料與 AI 的決策輔助平台。使用者可透過自然語言互動,提出人數、預算、區位、產業屬性等多重條件,再由系統動態生成可比較、可驗證的選址方案,真正將 AI 從「回答問題的工具」,轉化為「陪伴決策的數位專家」。

方睿科技
方睿科技技術長 郭彥良
圖/ 數位時代

創新 Data to win 模式,讓 AI 深入商用地產各階段決策流程

不過,單靠數據整合與 AI 應用仍不足以支撐產業全面升級,因此,方睿科技提出的第二條路就是,推動產業生態系聯盟,整合商用地產市場上不同角色的數據,讓 AI 能夠真正成為商用地產決策時的智慧引擎。

方睿科技不動產知識創新中心總監曾凡綱指出,目前在企業、房東或物業主與各類服務供應商之間,缺乏有效的整合機制,導致企業在選址與空間規劃過程中,難以快速找到真正合適的服務與解決方案,形成明顯的產業斷點。

為解決這些斷點,方睿科技提出「Data to win」模式,以資料取代傳統「Pay to win(付費買廣告)」思維,讓真正具備經驗與實績的服務夥伴,在適當的決策節點被看見。

曾凡綱說明,在廣告投放效益越來越低的情況下,企業服務商面臨的問題已不只是「如何曝光」,而是「如何在對的地方被看見」,這將是未來的市場勝出指標;而 Data to win 正好可以協助企業服務商建立此能力,方睿科技將生態系夥伴所擁有的案例、服務紀錄與產業知識等資料,經過去識別化與結構化處理後,再嵌入企業決策流程中,讓推薦不再來自廣告投放,而是真實、可被驗證的使用經驗,透過這樣的機制,不僅提升企業決策的準確度,也能同步放大生態系夥伴在合作中的實質價值。

舉例來說,方睿科技整合辦公傢俱夥伴 Backbone 班朋實業長期累積的辦公室規劃案例與平面圖資料,讓企業在選址階段,就能同步評估空間規劃方案,加速決策流程。又如,整合出行服務夥伴 USPACE 悠勢科技的服務資料,並呈現在地圖上,協助企業評估辦公據點的交通便利性,優化員工日常通勤與出行體驗。此外,平台也可整合大樓的 ESG 認證、公共設施與服務層資訊,協助企業快速篩選符合需求的辦公大樓,提升進駐媒合效率。

方睿科技
方睿科技不動產知識創新中心總監 曾凡綱
圖/ 數位時代

「Raise Day 只是這場變革的起點。」吳健宇強調,方睿科技已經透過投資與合夥模式,將布局延伸至專業地產服務與空間經營領域,至今旗下已有商用不動產仲介、顧問與估價等專業服務的宇豐睿星,以及聚焦商用地產代銷市場的希睿創新置業。透過直接參與第一線實務運作,方睿得以更深入理解產業真實痛點,讓科技不只是工具,而能真正回應實際決策與服務需求。

此外,方睿科技未來也將持續擴大「商用地產 x 企業服務生態系」聯盟,目前包括 Backbone、USPACE、IKEA For Business、潔客幫等企業服務夥伴已率先加入;接下來,方睿科技將邀請更多擁有關鍵數據與專業能力的企業服務商加入,讓數據在安全、可控的前提下流動,進一步釋放商用地產在選址、營運與企業服務等全生命週期中的結構性價值,為產業轉型啟動下一個關鍵階段。

方睿科技
右起方睿科技共同創辦人暨營運長陳致瑋、USPACE悠勢科技共同創辦人暨執行長宋捷仁 、Backbone班朋實業創辦人暨執行長廖家葳,透過企業服務生態系合作共同為產業啟動下一個關鍵階段。
圖/ 數位時代

方睿科技官網: https://www.funraise.com.tw

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓