AI換臉的偽造影片到處流竄,識別造假的軍備競賽開打
AI換臉的偽造影片到處流竄,識別造假的軍備競賽開打

Deepfake自問世以來,一路向著人性陰暗面奔去。

民間技術流已經對AI換臉教程玩得不亦樂乎。但每個人也更容易成為受害者:偽造綁架影片勒索詐騙,不雅影片毀壞名譽,或者恐怖影片製造混亂,都因為Deepfake的開源技術變得空前容易。

Deepfake2
讓一眾名人換上美國前總統布希的面部動作圖TED
圖/ 品玩

在Photoshop摧毀了大眾對圖片的信任後,Deepfake正在摧毀大眾對影片的信任。沒人想在網路上看到自己的面孔說著自己沒說過的話。許多針對個人的傷害,也因為影響不夠巨大而投訴無門。

美國正在組成一支Deepfake打假隊伍,不僅是各大實驗室、研究中心在尋找Deepfake的破綻,一股創業潮流也正在興起。

但這是一場造假AI與鑑假AI之間「你有張良計,我有過牆梯」的競賽。每一篇檢測Deepfake的論文,彷彿都能提示造假技術修補自身漏洞,從而更上一層樓。

關上Deepfake的潘朵拉魔盒,他們能做到嗎?

用打假Deepfake創業

西瓦.金塔利(Shiva Kintali)離開擔任講師4年的普林斯頓資工系,正在矽谷創業鑑別偽造影片。他的合作對像有警察、記者、保險公司等,透過機器學習尋找偽造影片的破綻,用區塊鏈記錄信息等技術來輔助鑑別。

金塔利的網站已經可以上傳圖像、音樂、影片,來分析檢測是否有修改痕跡。他同時在開發一個手機相機應用程式,用人工智慧為圖像添加時間、地點、浮水印,並將圖片原始信息印在區塊鏈上。一旦傳播圖像的信息與原始圖片不符,就容易判斷真偽。

這些產品希望幫助記者、媒體公司、政治競選團體、執法機構(例如:FBI、NSA),保險公司(面臨虛假事故照片的保險索賠問題)和大公司(例如:Facebook、Twitter、Redditt、Pornhub),在其平台上阻止虛假的影片、音樂、照片傳播。

由於Deepfake降低了影片造假的門檻。面對真偽難辨的影像資料,記者不知道能否發布,保險公司不知是應該理賠還是報警詐騙,警察收集證據後,也需要專業工具去鑑定圖片和影片的真偽。

目前流傳的假影片大多是「淺度造假」,但因為數量多,造成了無數困擾。史丹佛的研究人員向鑑別公司了解到困擾他們的三大問題:數量太多,可用鑑別時間太短,缺乏標準化的工具。

因此,研究者們在尋找能夠大規模應用的打假方法。Facebook、Twitter等社交網絡上爆炸式傳播的圖片和影像,給闢謠留下的時間窗口越來越短。普通大眾也不可能僱傭專業人士進行鑑別。

搶先商用化的圖像驗證平台Truepic已經上線了一款智慧相機應用。用戶拍下的圖像將上傳至服務器,在創建時對照片和影片進行身份驗證,獲得唯一編碼。相機應用捕獲設備的感測器數據,在傳輸之前加密照片或影片,運行20多個圖像取證測試,並在幾秒鐘內,將圖像的加密簽名印在公共區塊鏈上,使得信息不可被篡改。

這是一種「自證清白」的方式,適用於電子商務平台和公民記者類用戶。如果用戶將圖片發送給接收者,Truepic允許收件人驗證圖像的原點和元資料的完整性。任何二次傳播的多媒體材料,都可以與區塊鏈上的原始信息對比,辨別真假。

在Deepfake的威脅下,鑑定圖片、影片的真實性,都成了相機應用的賣點。但這類以營利為目的的產品又引起了用戶新的隱私擔憂。畢竟,誰能確保Truepic不作惡呢?

演算法打演算法

位於矽谷的史丹佛實驗研究院(SRI International)的AI中心則「以毒攻毒」,用偽造的影片訓練演算法,讓演算能夠更好識別出偽造痕跡。在人們上傳影片到社交網站的時候,平台需要對影片重新編碼。這是一個檢測虛假影片的好時機。

但隨著Deepfake的漏洞日漸優化,用演算法打演算法的難度也日益加大。

打假AI原本就是訓練造假AI的一部分,二者剛好在生成對抗性網路的兩端。一個生成器,一個鑑別器,道高一尺,魔高一丈。

由於Deepfake的技術在於篡改數據,那麼鑑別方則在尋找一切篡改數據的痕跡。一種方法是基於像素的影片檢測,影片其實是成千上萬幀圖片連放,細緻到檢測每個像素的改變痕跡,是一件頗為浩大工程。

此外,偽造的面部表情目前仍有缺陷。偽造的臉部表情往往與其他部分存在不一致,電腦演算可以檢測圖片或影片中的這種不一致。

Deepfake#
加州大學柏克萊分校的研究者比較真假人物的面部差異
圖/ 品玩

舉例而言,初代Deepfake影片中的人物,眨眼的方式都有點奇怪。

紐約州立大學奧爾巴尼分校電腦科學系副教授呂思偉曾撰文表示,成年人的眨眼間隔為2秒到10秒,一次眨眼需要十分之一到十分之四秒。這是正常影片人物應有的眨眼頻率,但很多Deepfake影片的人物沒能做到這一點。

彼時由於缺乏閉眼圖像數據,算法的訓練並不完美,影片人物面孔總有一種「哪裡不對」的不和諧感。

然而,通過閉眼的面部圖像、或使用影片序列進行訓練,可以改善眨眼間隔。虛假影片的質量總會提高,而研究人員需要繼續尋找檢測它們漏洞的方法。

南加大的研究者威爾.阿布達-阿爾瑪基德(Wael Abd-Almageed)表示,社群網路可以使用算法來大規模識別Deepfake。為了實現這一過程的自動化,研究人員首先建立了一個神經網絡,「學習」人類在說話時如何移動的重要特徵。然後,研究人員使用這些參數將偽造影片的堆疊幀輸入AI模型,以檢測隨時間的不一致性。

普渡大學的研究人員也採用了類似的方法,他們認為,隨著訓練模型的Deepfake影片數據量越來越大,模型也會更加精確,更容易檢測出偽造的影片。

美國2020年大選在即,如何阻止Deepfake從低俗娛樂發展到操縱民意,是研究者們最迫切的動力之一。但願一鍵打假的速度,能追上一鍵換臉的速度。

責任編輯:江可萱

本文授權轉載自:PingWest

往下滑看下一篇文章
AI代理時代已至!國泰金控以GAIA 2.0框架加速AI應用百花齊放
AI代理時代已至!國泰金控以GAIA 2.0框架加速AI應用百花齊放

AI正以驚人速度重塑世界樣貌,金融產業也不例外。國泰金控作為台灣最大的金融控股公司之一,不僅積極擁抱創新變革,更透過開放分享促進產業共好:在「2025國泰金控技術年會」中分享「GAIA 2.0技術框架」,揭示多代理(Multi-Agent)雲端協作架構,讓AI從知識問答助理進化成可以自主推論、規劃與協作的夥伴,拉開以人為中心的金融科技新世代序幕。

以GAIA 2.0技術框架為基礎,加速集團應用百花齊放

GAIA是國泰金控為實現AI即服務(AI as a Service)提出的關鍵技術框架,歷經一年的發展,不僅成功建立超過200種資料類別的知識庫、彙整50多種生成式AI模型的Model Hub、設有70道安全防護檢查點的AI護欄。

國泰金控
國泰金控副總暨國泰世華銀行數據長梁明喬分享GAIA 2.0技術框架與集團GenAI應用案例
圖/ 數位時代

國泰金控副總經理暨國泰世華銀行數據長梁明喬指出:「隨著代理式AI技術崛起,我們在今年提出GAIA 2.0技術框架,目標是讓AI助理(Assistant)進化成AI Agent,可以跨單位整合工具、數據與分工,實現真正的智慧協作。」

舉例來說,為深化集團員工運用AI提升工作效率,我們打造員工AI助手—Agia,協助同仁進行知識查詢、資料摘要等任務,提升效率與生產力;另外,透過AI自助開發平台—GAIA Studio,讓員工以No Code工具,連結內部知識庫,並以視覺化介面或Prompt快速自主開發,打造業務場景所需的生成式AI服務與工具。GAIA Studio 上線三個月已有28個部門自助開發超過40支內部應用AI服務(包含行銷文案、各類產品知識、趨勢摘要等)。

在技術面,具體作法是透過GAIA 2.0框架下的四個模組,包含負責統籌AI Agent任務分配與協作流程的「Agent Core核心框架」、提供安全自主運作環境的「Agent Workspace可控環境」、連結Agent間共通語言的「Agent Protocol串接協定」,以及集中管理AI工具與元件的「Agent Marketplace整合市集」,以加速AI Agent應用研發與部署。

梁明喬表示:「接下來,我們將以GAIA為引擎,打造通用型、業務型、IT型與服務型AI應用,如Vibe Coding、CUBE Intelligence等服務,一步一腳印擴展集團的AI Agent生態圈,型塑智慧金融新格局。」

舉例來說,隨著生成式AI普及,客戶對於數位(助理)服務的期待更高,國泰世華銀行數位品牌CUBE推出「CUBE Intelligence」兩項新服務,包含「升級版」智能助理–阿發,滿足客戶詢問複雜問題的需求,無論客戶提出什麼問題,都可以完整步驟與適當的情緒價值強化與客戶的連結,讓服務更智慧、貼心且符合期待。

國泰金控
國泰金控副總暨國泰世華銀行數位長陳冠學展示「CUBE Intelligence」兩項新服務
圖/ 數位時代

國泰金控副總經理暨國泰世華銀行數位長陳冠學表示:「除了升級版阿發,另一新服務是我們也在CUBE App新增『對話式功能搜尋(CUBE Search)』,就像把行員放到CUBE App一樣,讓客戶可以用自然語言輕鬆找到想要的服務,讓服務體驗變得更聰明、更人性也更懂你。」兩項CUBE Intelligence新服務即將在年底正式上線。

跨界合作推動台灣大型語言模型落地,加速生成式AI發展

大型語言模型具備強大的語意理解與內容生成能力,是生成式AI快速發展的關鍵推力。國立政治大學金融科技研究中心主任王儷玲指出:「金融產業因為有獨特的金融語境、法規語意以及在地化的繁體中文知識,國際通用模型並不適用,必須建構本土知識庫、標準化模型機制、AI 法規沙盒及在地算力平台,發展台灣企業共同主導與管理的大型語言模型,方能讓更多金融業者透過微調打造適用模型、加速可信賴的AI Agent服務落地。」

國泰金控數數發中心數據暨人工智慧發展部副總經理劉浩翔進一步補充:「本地大型語言模型的成功關鍵,不僅是掌握充足且高品質的數據,還要透過後訓練微調與人類回饋強化學習的訓練方式去微調出適用的AI模型,藉此提升答案的精準度,尤其是需要跨法規、多層邏輯的嚴謹金融專業知識。」

AI要成功,除了應用場景、模型,算力也扮演至關緊要角色,對此,鴻海科技集團亞灣超算執行長姚延宗表示:「本土算力是支持本土大型語言模型落地的關鍵。」不過,他也強調,AI算力快速迭代且進入門檻高,不是每一間企業都可以自建算力,因此,亞灣超算與NVIDIA合作啟用超算中心,讓金融等台灣企業可以按需租賃所需算力,解決資料共享等敏感問題,加速金融AI應用的多元發展。

國泰金控
產業與學界專家於國泰金控技術年會交流生成式AI如何在台落地應用,左起為:國泰金控副總經理施君蘭、政治大學金融科技研究中心主任王儷玲、國泰金控數數發中心副總經理劉浩翔、鴻海科技集團亞灣超算執行長姚延宗
圖/ 數位時代

總的來說,從GAIA 2.0技術框架的推出、生成式AI的落地應用、到積極參與本土大型語言模型建置等行動,可以清楚看到,國泰金控正由內而外推動全面AI創新:強化內部流程效率與治理能力、以智慧化服務提升客戶體驗,並透過技術開放與跨域合作,為金融產業的數位與AI智慧轉型注入新動能。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓