AI換臉的偽造影片到處流竄,識別造假的軍備競賽開打
AI換臉的偽造影片到處流竄,識別造假的軍備競賽開打

Deepfake自問世以來,一路向著人性陰暗面奔去。

民間技術流已經對AI換臉教程玩得不亦樂乎。但每個人也更容易成為受害者:偽造綁架影片勒索詐騙,不雅影片毀壞名譽,或者恐怖影片製造混亂,都因為Deepfake的開源技術變得空前容易。

Deepfake2
讓一眾名人換上美國前總統布希的面部動作圖TED
圖/ 品玩

在Photoshop摧毀了大眾對圖片的信任後,Deepfake正在摧毀大眾對影片的信任。沒人想在網路上看到自己的面孔說著自己沒說過的話。許多針對個人的傷害,也因為影響不夠巨大而投訴無門。

美國正在組成一支Deepfake打假隊伍,不僅是各大實驗室、研究中心在尋找Deepfake的破綻,一股創業潮流也正在興起。

但這是一場造假AI與鑑假AI之間「你有張良計,我有過牆梯」的競賽。每一篇檢測Deepfake的論文,彷彿都能提示造假技術修補自身漏洞,從而更上一層樓。

關上Deepfake的潘朵拉魔盒,他們能做到嗎?

用打假Deepfake創業

西瓦.金塔利(Shiva Kintali)離開擔任講師4年的普林斯頓資工系,正在矽谷創業鑑別偽造影片。他的合作對像有警察、記者、保險公司等,透過機器學習尋找偽造影片的破綻,用區塊鏈記錄信息等技術來輔助鑑別。

金塔利的網站已經可以上傳圖像、音樂、影片,來分析檢測是否有修改痕跡。他同時在開發一個手機相機應用程式,用人工智慧為圖像添加時間、地點、浮水印,並將圖片原始信息印在區塊鏈上。一旦傳播圖像的信息與原始圖片不符,就容易判斷真偽。

這些產品希望幫助記者、媒體公司、政治競選團體、執法機構(例如:FBI、NSA),保險公司(面臨虛假事故照片的保險索賠問題)和大公司(例如:Facebook、Twitter、Redditt、Pornhub),在其平台上阻止虛假的影片、音樂、照片傳播。

由於Deepfake降低了影片造假的門檻。面對真偽難辨的影像資料,記者不知道能否發布,保險公司不知是應該理賠還是報警詐騙,警察收集證據後,也需要專業工具去鑑定圖片和影片的真偽。

目前流傳的假影片大多是「淺度造假」,但因為數量多,造成了無數困擾。史丹佛的研究人員向鑑別公司了解到困擾他們的三大問題:數量太多,可用鑑別時間太短,缺乏標準化的工具。

因此,研究者們在尋找能夠大規模應用的打假方法。Facebook、Twitter等社交網絡上爆炸式傳播的圖片和影像,給闢謠留下的時間窗口越來越短。普通大眾也不可能僱傭專業人士進行鑑別。

搶先商用化的圖像驗證平台Truepic已經上線了一款智慧相機應用。用戶拍下的圖像將上傳至服務器,在創建時對照片和影片進行身份驗證,獲得唯一編碼。相機應用捕獲設備的感測器數據,在傳輸之前加密照片或影片,運行20多個圖像取證測試,並在幾秒鐘內,將圖像的加密簽名印在公共區塊鏈上,使得信息不可被篡改。

這是一種「自證清白」的方式,適用於電子商務平台和公民記者類用戶。如果用戶將圖片發送給接收者,Truepic允許收件人驗證圖像的原點和元資料的完整性。任何二次傳播的多媒體材料,都可以與區塊鏈上的原始信息對比,辨別真假。

在Deepfake的威脅下,鑑定圖片、影片的真實性,都成了相機應用的賣點。但這類以營利為目的的產品又引起了用戶新的隱私擔憂。畢竟,誰能確保Truepic不作惡呢?

演算法打演算法

位於矽谷的史丹佛實驗研究院(SRI International)的AI中心則「以毒攻毒」,用偽造的影片訓練演算法,讓演算能夠更好識別出偽造痕跡。在人們上傳影片到社交網站的時候,平台需要對影片重新編碼。這是一個檢測虛假影片的好時機。

但隨著Deepfake的漏洞日漸優化,用演算法打演算法的難度也日益加大。

打假AI原本就是訓練造假AI的一部分,二者剛好在生成對抗性網路的兩端。一個生成器,一個鑑別器,道高一尺,魔高一丈。

由於Deepfake的技術在於篡改數據,那麼鑑別方則在尋找一切篡改數據的痕跡。一種方法是基於像素的影片檢測,影片其實是成千上萬幀圖片連放,細緻到檢測每個像素的改變痕跡,是一件頗為浩大工程。

此外,偽造的面部表情目前仍有缺陷。偽造的臉部表情往往與其他部分存在不一致,電腦演算可以檢測圖片或影片中的這種不一致。

Deepfake#
加州大學柏克萊分校的研究者比較真假人物的面部差異
圖/ 品玩

舉例而言,初代Deepfake影片中的人物,眨眼的方式都有點奇怪。

紐約州立大學奧爾巴尼分校電腦科學系副教授呂思偉曾撰文表示,成年人的眨眼間隔為2秒到10秒,一次眨眼需要十分之一到十分之四秒。這是正常影片人物應有的眨眼頻率,但很多Deepfake影片的人物沒能做到這一點。

彼時由於缺乏閉眼圖像數據,算法的訓練並不完美,影片人物面孔總有一種「哪裡不對」的不和諧感。

然而,通過閉眼的面部圖像、或使用影片序列進行訓練,可以改善眨眼間隔。虛假影片的質量總會提高,而研究人員需要繼續尋找檢測它們漏洞的方法。

南加大的研究者威爾.阿布達-阿爾瑪基德(Wael Abd-Almageed)表示,社群網路可以使用算法來大規模識別Deepfake。為了實現這一過程的自動化,研究人員首先建立了一個神經網絡,「學習」人類在說話時如何移動的重要特徵。然後,研究人員使用這些參數將偽造影片的堆疊幀輸入AI模型,以檢測隨時間的不一致性。

普渡大學的研究人員也採用了類似的方法,他們認為,隨著訓練模型的Deepfake影片數據量越來越大,模型也會更加精確,更容易檢測出偽造的影片。

美國2020年大選在即,如何阻止Deepfake從低俗娛樂發展到操縱民意,是研究者們最迫切的動力之一。但願一鍵打假的速度,能追上一鍵換臉的速度。

責任編輯:江可萱

本文授權轉載自:PingWest

往下滑看下一篇文章
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網
為保戶守護重要資產,南山人壽以黃金眼 AI 防詐模型建構全通路資產防護網

為守護保戶資產,南山人壽集結客戶服務、數位、資訊三個部門的能量,自行研發「黃金眼 AI 防詐模型」,自 2024 年底完成開發後,截至今年 11 月已成功阻擋多起詐騙案件、攔阻金額累計逾新臺幣 900 萬元,並獲得 2025 數位金融獎等殊榮。

「黃金眼 AI 防詐」模型為什麼可以有效防詐、更好守護保戶資產?

南山人壽客戶服務資深副總經理李淑娟面帶微笑地解釋:「『黃金眼 AI 防詐』是透過龐大的保戶資料結合前線客服的實務經驗建構而成的模型,不僅克服了壽險業交易頻率低且詐欺樣本極度不平衡的挑戰,還能夠偵測在臨櫃辦理保單借款或解約的高風險個案,讓客服人員可以主動提醒與關懷,有效降低詐騙風險,守護客戶資產安全與信任。」

南山人壽
南山人壽客戶服務資深副總經理李淑娟指出,詐騙手法快速進化,南山人壽研發黃金眼AI防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。
圖/ 數位時代

從詐保到詐財,壽險業面臨的風險加劇

過往,壽險業者面對的主要風險是保險詐欺,例如,透過偽造事故情節、虛構醫療紀錄等方式詐領保險理賠金,然而,隨著科技迭代與詐欺集團的組織化、專業化,這類手法已快速進化,從「偽造病歷、輕病久住、醫療共犯」等傳統模式,轉向結合數位科技與精準話術的跨領域詐財操作。

這一波詐欺風險不僅滲透力強、具備高迷惑性,也直接影響保戶資產安全。例如,詐欺集團利用假冒理賠諮詢等方式竊取保戶個資,再一步步誘導客戶辦理解約或申請保單借款,最後要求將資金匯到不明帳戶等,壽險業者面臨的風險範圍也從「詐領保險理賠」延伸到「詐騙保戶資產」。

李淑娟資深副總經理進一步指出,南山人壽每年要處理逾 35 萬件解約與借款案件,很難單憑人力在海量案件中精準辨識高風險個案。「為有效防堵詐欺事件,南山人壽除開發 AI 模型辨識詐保事件,更進一步研發黃金眼 AI 防詐模型,用前瞻科技主動攔截風險,強化保戶資產的安全防護。」

南山人壽以黃金眼 AI 防詐模型守護保戶資產

在打造黃金眼 AI 防詐模型時,南山人壽面臨兩個挑戰:首先是壽險的交易頻率低,導致資料稀缺;其次,是詐欺樣本比例高度失衡,導致 AI 很容易誤判。為化解這些挑戰,南山人壽整合保戶行為、保戶與保單側寫資訊與情境因素等多模態資訊進行模型訓練,爾後,透過集成學習(Ensemble Learning)整合多個不同觀點的「專家模型」共同判讀,提升模型判斷準確性。

南山人壽數位專案經理蔡其杭表示:「以多模態數據源跟集成學習的策略打造黃金眼 AI 防詐模型後,我們除了將模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級,協助客服人員快速識別高風險個案,主動介入並阻斷詐騙,更透過『自適應演進』與『外部資源擴充』兩個機制,持續優化模型辨識精準度。」

南山人壽
南山人壽打造黃金眼AI防詐模型,將模型串連至臨櫃客服系統,以直觀的紅、黃、綠三色燈號,即時呈現保戶的風險等級、協助客服人員快速識別高風險個案。
圖/ 數位時代

「自適應演進」指的是,客服人員會依據模型亮起的燈號,結合系統提供的關懷提問表,向臨櫃辦理解約或借款的保戶進行關懷詢問,如資金用途、是否接獲可疑來電等,藉此釐清是否存在異常情況,並將相關結果回貼標籤,作為後續調校模型的關鍵訓練素材,讓黃金眼 AI 防詐模型越用越精準。

「外部資源擴充」則是透過更多元的外部數據強化模型的防詐能力。例如南山人壽與內政部警政署刑事警察局簽署反詐騙合作備忘錄(MOU),在合規架構下共享情資,協助核對保戶是否曾有詐欺通報紀錄。蔡其杭補充,南山人壽目前正與電信業者合作,將其超過 1,400 項特徵因子導入模型,有效提升模型燈號判斷的靈敏度與可靠度,使黃金眼 AI 防詐成為更全面的金融詐欺偵測引擎。

蔡其杭表示,詐騙的手法日新月異,AI 阻詐模型除了能準確識別可疑的高風險案例外,更重要的是具備與時俱進、持續調優模型能力和效果的機制;如同維持客戶服務的品質一樣,刻不容緩。

南山人壽
南山人壽數位專案經理蔡其杭表示,黃金眼AI防詐模型串連至臨櫃客服系統,以直觀的「紅、黃、綠」三色燈號即時呈現保戶的風險等級。
圖/ 數位時代

李淑娟表示:「隨著模型的持續優化,黃金眼 AI 防詐模型的應用範疇將從目前的『臨櫃防堵』延伸到『全通路、跨產業、事前預警』的防禦機制,以事前預警的方式防堵詐欺事件。」舉例來說,當保戶撥打電話詢問保單借款或解約時,系統就會開始運作、提前識別風險,針對透過手機 APP 或網路平台辦理業務的數位客群,系統也會即時偵測,當出現高風險行為時即會立即展開關懷提問。

不僅從科技著手,南山人壽以 SAFE 逐步提升防詐安全網

值得特別注意的是,南山人壽並未將防詐視為單一的科技工程,而是從 SAFE–Skilled(防詐訓練)、Awareness(全民防詐)、Fintech(科技運用)、Engagement(聯防合作)–四個構面打造更完整的防護機制。

在專業技能方面,南山人壽不僅協助相關人員熟悉黃金眼 AI 防詐模型的操作模式,也持續透過內部教育訓練,以及跟刑事警察局等單位合作舉辦的工作坊等方式,全面提升員工識詐、阻詐的能力,達到 AI 人機互動的阻詐聯防保護網。

在防詐意識宣導方面,南山人壽除於全台 18 個分公司櫃檯播放刑事警察局提供的反詐騙影片,並在櫃檯明顯位置放置防詐文宣,協助來訪保戶掌握最新詐騙趨勢;更主動走入偏鄉、校園與新住民社群,並針對聽語障人士製作友善素材,以多元形式推廣防詐知識,降低詐騙事件發生的可能性。

在公私協力方面,李淑娟表示,南山人壽積極培育、鼓勵每一位壽險業務員成為「防詐大使」,在拜訪客戶時主動觀察各種異常徵兆,例如可疑的投資文宣或陌生人的頻繁出入,並將這些現場蒐集到的「軟性數據」提供回公司,作為模型判斷的補強資訊,以提升事前預警效果。

為了更好的保護高齡與失智等高風險族群,南山人壽也積極推動「保單安心聯絡人」機制,鼓勵保戶指定第二聯絡人,在其申請保單借款或終止契約時,可以主動通知聯絡人介入確認,降低詐騙風險;此外,亦針對受詐保戶提供「喘息關懷服務」,以低利紓困貸款協助保戶在遭遇詐騙後仍能穩定度過財務壓力,將防詐保護從事中攔阻延伸到事前預警與事後援助兩個層面,樹立產業新標竿。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓