被隨機播放、演算法綁架,還能自己做決定嗎?AI時代下,恐掀爆炸級影響
被隨機播放、演算法綁架,還能自己做決定嗎?AI時代下,恐掀爆炸級影響

你很可能有過這樣一種體驗:不知道聽什麼歌的時候,打開「隨機播放」。突然「隨」到一首你曾經很喜歡,卻好久沒聽過的歌,旋律一下把你帶回到了過去的某個時刻,令你心生感慨。

對年輕人來說,「隨機」的存在像空氣一樣理所當然。但實際上,它的歷史並沒有那麼悠久,直到上個世紀 80 年代,「隨機」功能才開始出現在 CD 播放機上。

如果你年齡稍大,熟悉磁帶的工作原理,就更容易意識到:「隨機播放」是音樂數位化之後,才可能被開發出來的功能,類比介質是做不到的。

它絕不只是一個小功能那麼簡單。「隨機」對電腦、資訊學的發展有著深刻意義。你甚至可以說「隨機」是人類第一次創造了某種「生成式機器」。

因為,隨機排列資訊,就是在創造新的資訊。

從 70 多年前,圖靈設計的「亂數產生器」,到今天的「生成式 AI」,隨機的概念貫穿了整個電腦發展史,也深刻改變了我們消費資訊的方式。

在它不斷演變、進化的過程中,我們也需要自問:人類是否還掌握著自我意志的韁繩?是否還擁有創造的自由、選擇的權利?

古典音樂到流行音樂、磁帶到iPod的出現,「隨機播放」怎麼誕生的?

如果你用了蘋果上個月剛推出的古典音樂 App,Apple Music Classical,你有很大的機率會發現,它沒有「隨機播放」功能。

這並不難理解,古典樂裡的交響樂、協奏曲,時長一般在 30 分鐘左右,且往往被分為三個樂章,不同樂章之間有明確的順序,不能被打亂。這也導致,如果你想聽古典樂,最好很明確地知道自己要聽的是什麼曲子。古典樂不能隨時開始,隨時結束,也無法「隨機播放」。

這與古典樂誕生的時代背景有極大關係。在古典樂蓬勃發展的 18-19 世紀,「留聲機」還沒有被發明出來,人們想要聽音樂,就必須去劇院,聽樂隊現場演奏。

與之形成鮮明對比的是流行樂。今天大部分流行歌曲的長度,多為 3-5 分鐘。即便大部分專輯會包含 10 首左右的歌曲,長度加起來也接近一首交響樂,但歌曲與歌曲之間並沒有明確的「順序關係」,可以被隨機播放。

這同樣與時代、技術背景密不可分。流行樂的曲目長度之所以是 3-5 分鐘,是因為 20 世紀初,首次被標準化的,78 rpm 的黑膠唱片,它單面能保存的聲音長度,就在 3-5 分鐘。

留聲機和唱片的出現,開啟了流行樂的時代。

包括「專輯」的英文是 album,還有「相冊」的含義。這也是因為,早期的專輯由多張單曲唱片組成,這些唱片被裝在一個類似相冊的包裝裡,所以才用了 album 這個詞來指代「專輯」。這種新的音樂組織形式,最終導致歌曲之間的「順序關係」被弱化。

延伸閱讀:把電台DJ也搬進Spotify,而且「他」是AI!Spotify怎麼打造客製化電台?

而激起人們「重新排列歌曲」熱情的,是磁帶。

磁帶相比黑膠,最大的區別就在於它可以「抹寫」,留聲機也進化為答錄機,人們開始自己錄製磁帶。

過程中出現了「混音磁帶」。80 年代的人們,會買來空白錄音帶,把多張不同磁帶專輯裡的不同歌曲,錄進空白磁帶,做成一張實體的「歌單」。當年最流行的錄放影機,常常會配備兩個磁帶卡槽,就是為了方便使用者製作自己的混音磁帶。

儘管只是重新組織、排列歌曲,這種「再創作」卻為使用者帶來了一種全新的體驗。把不同的歌曲以不同順序放在一起,就能表達出完全不同的意義。當時的年輕人,紛紛開始製作自己的「混音磁帶」,彰顯品味,表達心意。

進入 CD 時代,音樂從連貫的類比信號,開始演變為數位檔案,這讓「隨機播放」終於成為可能。

最早是在 80 年代,飛利浦的工程師首次在 CD 播放機上實現了隨機播放,後來索尼開始將隨機功能作為一個賣點,放在了 CD 播放機上。

2000 年以後,MP3 播放機開始湧現,「隨機播放」迎來了它的真正的黃金時代。包括當時剛剛回歸的蘋果的賈伯斯,也將隨機播放視為一個關鍵功能,加入了 iPod 和 iTunes。

2005 年,蘋果推出 iPod shuffle,一款把隨機功能刻在靈魂裡的播放機。iPod shuffle 沒有螢幕,除了控制播放/暫停、音量、上/下一曲按鈕之外,就只有一個「隨機」開關。它的設計理念就是讓使用者隨時隨地,戴上耳機,聽到一首隨機的歌曲。

ipodshuffle2015lineup.jpg
圖/ 蘋果

如果說隨機播放有什麼妙處,一方面在於它打亂了專輯一成不變的曲序,加入了一點「不確定性」;另一方面也在於它代替使用者做了「選擇」,人們不用再從一個冗長的曲目列表裡挑一首歌來聽,而是只需要不斷按「下一首」,等著隨到一首自己想聽的歌。

這種不斷按「下一首」的體驗,是不是跟今天我們刷短影音很像?實際上,短影音的核心互動機制,就是一種「隨機播放」。

短影音互動是隨機的變體,一窺隨機播放演變史

當年賈伯斯如此重視「隨機播放」,並非偶然。

「用電腦模擬隨機」的嘗試,可以說貫穿了整個電腦的誕生和發展史。它最早可以追溯到 20 世紀 50 年代,「電腦之父」艾倫‧圖靈,在史上第一台通用電腦 Ferranti Mark 1 裡,加入了一個亂數產生器。

早期的亂數產生器,曾分化為兩條技術路線,真隨機和假隨機。

簡單來說,真隨機是利用自然界中的隨機物理現象,特別是與電相關的現象所產生的「雜訊」,作為隨機的依據。比如圖靈最早的亂數產生器,就是透過導體中電子熱震盪產生的雜訊,一次生成 20 個隨機比特,相當於可以生成一個 0 到 1048575 之間的十進位亂數。

亂數
圖/ T客邦

與之相對的,假隨機則是透過數學方法「算」出一個亂數,以及從設定好的「亂數池」裡抽取數字。還有一些方法,能透過一個比較小的真隨機「種子」,經過計算,推算出更多、更大的亂數。這樣做可以提升亂數產生的效率。

人們對「真隨機」的思考,最終上升到了哲學高度。

比如有觀點認為,類似於「投擲硬幣」這樣看似隨機的事件,如果你能充分描述硬幣初始的運動和受力狀態,同樣可以預測投擲的結果。而類似的邏輯,可以推廣到任何系統,只要構建足夠準確的模型,充分描述系統狀態後,就能推算出結果。

所以很多人都認為,真正的隨機,只存在於量子實體層面。

但在具體應用上,亂數的「真假」已經不那麼重要。除少數領域如密碼學、博彩業,需要透過盡可能高品質的真隨機,來保證系統的不可預測性、安全性。除此之外,大部分隨機功能都開始往另一個方向演變——加權隨機。

加權隨機的一個經典應用是在遊戲領域,比如暴擊系統。

舉一個很簡單的例子,當遊戲裡一個角色的暴擊率是 50% 時,玩家有 12.5% 的機率遇到三刀連續不暴擊。出現這種情況的機率不低,但這卻是一個很反直覺的體驗,很容易導致玩家覺得「機率不真」,也給遊戲體驗帶來了過多不確定性。

所以,今天的大部分遊戲開發者,都會採用「動態加權隨機」的設計。具體來說,當暴擊率是 50% 時,玩家第一次攻擊的暴擊幾率會低於 50%,但如果沒有暴擊,下一次攻擊的暴擊機率就會上升,直到接近 100%,但總體的暴擊幾率依然符合 50% 的數字,只是暴擊的出現會相對變得更均勻。在手遊領域,類似的思路催生了另一種被廣泛採用的設計:抽卡保底機制。

這種經過設計、修改的「加權隨機」,最終在行動網路時代,演變為了內容推薦演算法。

比如曾被賈伯斯重視過的「隨機播放」,在串流媒體服務的時代,演變為了個性化推薦的電臺、歌單。

Spotify 率先邁出這一步,決定 all in 演算法,Apple Music 也隨之跟進。後來,幾乎所有的串流媒體音樂服務,都開始借助演算法,向使用者推薦個性化的「隨機」歌曲。

Apple Music
圖/ T客邦

最終,這種體驗造就了行動網路最成功的產品形態——短影音。

如果我們將短影音應用的互動邏輯拆解到底層,它幾乎就是一個永遠不會結束的「隨機列表」,使用者不斷向上「刷」的動作,就像是在 iPod shuffle 的時代不斷按「下一曲」。

而這種你永遠不知道下一首歌、下一個影片會不會更好聽、更好看的心理機制,持續吸引著使用者,令他們流連忘返。

充滿隨機的時代,必須緊握「自我意志」的韁繩

如果我們把抽卡、短影音、推薦演算法都視為「隨機」的一種變體,毫無疑問,「隨機」已經統治了世界。

而這種統治也不出意外地,引發了爭議。比如不少人認為,抽卡遊戲本質上就是一種「賭博」,短影音則過度侵蝕了人們的時間和精力。各家都推出了一些「防沉迷」系統,輔助使用者在使用這些 App 之餘,掌握自己的生活。

包括音樂也是一樣。今天有一部分「專輯原教旨主義者」認為,聽專輯就必須按順序聽,隨機播放是一種錯誤。

這一爭端最早還只是愛好者之間的事情,但它在 2021 年被帶到了檯面上。當時知名歌手 Adele 在新專輯《30》發表後不久,向 Spotify 發出了控訴,指責 Spotify 專輯介面上的播放按鈕,會預設隨機播放整張專輯。她認為專輯本身的曲序不應被破壞。

事情最終以 Spotify 修改產品收場,直到今天,你在 Spotify 上點開任何一張專輯,預設的播放按鈕都是「順序播放」。

spotify
圖/ T客邦

但這依然無法逆轉「隨機」的魔力。

今天的人們使用音樂軟體,聽歌單、聽個性推薦、電臺越來越多,除了極少數大牌歌手,還擁有強大的聽眾號召力之外,大多數音樂人,都需要想辦法「迎合演算法」。很多作曲者,甚至在創作之初,就會有意設計一個非常激烈、有落差感的「高潮」,因為這樣的曲子會更容易被用來做 TikTok、抖音的背景樂,也就更容易被演算法推送到使用者的耳朵裡。

包括 Apple Music,早期極力宣傳自己的歌單都由真人編輯,而非演算法生成。但在 2021 年,蘋果也推出了「自動播放」功能。這個功能與 Spotify 的演算法系統類似,會在使用者播放一張專輯、歌單後,繼續自動播放演算法推薦的歌,無限續播下去。

事實證明,所謂的「個體意志」,其實相當虛弱,特別是在那些瑣碎的事情上。就像被問到「晚上想吃什麼?」,我們總是希望對方直接給到一個足夠好的答案——我們想要的不是選擇權,而是決策權。

但令人擔心的是:如果我們將一切的選擇都交付出去,交給演算法和機器,最終的那個「決策權」,或許也會逐漸變得搖搖欲墜。

今天,越來越多的創作者,無論是音樂人、寫作者,還是影片作者,都感到越來越難把握創作的「脈搏」,因為演算法的偏好瞬息萬變,稍不留神就會被沖刷下去。

而如果說推薦演算法的影響還只是「人類發現了火」,生成式 AI 的湧現,以及它的潛在影響,則可能達到「核反應」的等級。

截至目前,一切的生成式 AI,它們的神經網路學習機制,本質都是在隨機遍歷各種詞語、圖元,在紛繁的神經網路裡不斷進行「加權隨機」,找到一條機率最大的通路,生成結果。這個結果可以是語句、圖片或影片。

生成式 AI 的出現,必然會戳到人類的「軟肋」。畢竟你不再需要自己去遣詞造句、拍照、畫圖……就像你不需要想自己要聽什麼歌一樣。

這裡的問題同樣在於,我們會不會因此失去原本的能力?越來越多人會不會像短影音時代一樣,不再知道歌名、歌手一樣,失去說話、造句的能力?

答案依然藏在「隨機」的漫長歷史中。

無論是隨機播放,還是內容推薦演算法,都並沒有抹除創作者的存在。技術不斷發展,不變的是每一代人,都找到了聆聽、理解音樂,以及進行二次創作的方法,後者甚至變得越來越豐富。而越是在一個充滿不確定,充滿隨機的時代,越是需要我們主動去理解、思考,握住意志的韁繩。

這正是「個體意志」的體現,思考不停,創造不止。

延伸閱讀:【觀點】ChatGPT是文案寫手、小編的大敵?免擔心!這些能力AI難取代

本文授權轉載自:T客邦

責任編輯:傅珮晴、蘇祐萱

關鍵字: #AI
往下滑看下一篇文章
從台流轉型到跨界共創,2025亞洲新媒體高峰會以「RESILIENCE:韌性 · 突圍」驅動產業續航
從台流轉型到跨界共創,2025亞洲新媒體高峰會以「RESILIENCE:韌性 · 突圍」驅動產業續航

全球影視娛樂正處在結構翻轉的臨界點。從串流平台的競合與權力再分配,到生成式AI引爆的創作革命,再到觀眾注意力被碎片化的內容浪潮瓜分,市場規則幾乎在一年之內重寫。

在這樣的動盪中,「如何永續成長」成為所有內容產業的共同焦慮。台灣擁有豐沛的創作能量,卻在規模化與國際化的路上,始終面臨結構性瓶頸。為了回應時代考驗,NMEA(新媒體暨影視音發展協會)以「RESILIENCE:韌性 · 突圍」為題,將於11月24日至25日舉行2025亞洲新媒體高峰會,邀請超過五十位國內外產業領袖對話,從組織、內容、技術與商業模式出發,探討如何讓台灣影視娛樂在不確定中,創造屬於自己的續航動能。

韌性,從衝擊中找到成長的可能

「Resilience」一詞原本源自工程學,指材料在受壓後能回彈的能力。NMEA理事長李芃君指出,當這個詞被用於產業時,它所代表的已不只是「抗壓」,而是「擁抱變化與永續成長」的能力——在巨變中快速重組關鍵資源、甚至藉由創新找到新的突破。

她觀察,全球產業變動的背後,主要受到三股力道的衝擊:地緣政治的風險、科技典範的轉移,以及氣候與疫情等帶來的自然挑戰。這些因素同樣影響著台灣文化內容產業。

以台灣一家全球背光模組大廠為例。近年隨著國際電子品牌紛紛在筆電與平板產品導入OLED顯示技術,傳統背光模組市場面臨挑戰;該企業在察覺趨勢轉向後,選擇主動調整策略,透過併購前沿技術快速推出新產品,切入車用、醫療與AR/VR顯示等新領域。李芃君指出,這樣的轉向即是韌性的展現——在技術更迭的浪潮中重新定位自己,讓企業從被動防守,轉為開創下一波成長曲線。

「這種思維放回影視娛樂也一樣。當市場被新技術和新平台顛覆,產業若仍困於單一市場、單一資金、單一合作關係,就難以應對下一次衝擊。」她強調,建立韌性不能停留在抽象的口號,必須要有具體行動,而關鍵就在「多角化」。

多角化的市場讓故事能走出台灣、觸及不同文化的觀眾;多角化的技術與人才,讓製作不再受限於傳統框架;而多角化的資金與夥伴結構,則能減少對補助與單一委製案的依賴,形成正向循環的產業體質。諸如日本《鬼滅之刃》透過IP延伸創造跨世代效應,或泰國在政府策略支持與國際平台Netflix合作,讓在地內容走向全球,都是多角化的案例。

高峰會四大主軸,挖掘韌性的潛力

「政策當然重要,但最終能否長出韌性,關鍵仍在產業本身的自覺與行動力。」李芃君表示,第七屆亞洲新媒體高峰會以「台流轉型、跨界共創、影視創新、商模躍進」四大主軸為核心,期望讓韌性不再停留於口號,而能轉化為具體實踐。不只是思考「如何生存」,更要推動產業主動探索「如何成長」。

在「台流轉型」議題中,論壇將從亞洲娛樂的整體格局出發,思考台灣內容如何在國際市場中建立辨識度與合作機制。面對串流平台競爭與區域內容崛起,產業要重新定義「台流」的價值,從單點創作走向跨國布局。

「跨界共創」則從電競、音樂、體育到AI應用,剖析影視娛樂如何走向一個多層次的體驗場域。透過多個實際案例,探討不同產業之間的協作經驗,助攻內容突破原有框架,創造新的商業能量。

「影視創新」主軸聚焦於新技術與內容形式的融合。如:短劇風潮、現象級作品及AI生成式內容等,正改變影視產業的創作邏輯。論壇將聚焦技術如何成為創意夥伴,推動人才與內容的再進化。

最後,「商模躍進」則回應內容永續與變現挑戰。當觀眾行為與平台策略不斷重組,內容不再只是作品,也是可延伸、可轉化的商業資產。論壇將引導產業思考,如何讓內容價值在不同階段持續發酵,打造可長可久的生態循環。

李芃君強調,高峰會的價值,在於讓這些不同維度的討論彼此交會;唯有當創作、技術與資本願意對話,產業的韌性才能真正落地。「我們希望產業能從危機思維轉向成長思維,在對話與合作中,激盪出新的想像與行動。」

韌性,新媒體暨影視音產業必備的DNA

自2017年成立以來,NMEA持續扮演政策倡議與產業整合的推動者。每一屆高峰會也都對應時代命題,映照產業進化軌跡。從2023年「EMPOWERING」的全面賦能、2024年「CONSOLIDATION」的整合共榮,到今年的「RESILIENCE」發揮韌性、尋求突圍,李芃君形容,這是一條從能力啟動、資源整合到體質調整的路徑,引領台灣影視娛樂邁向國際舞台。

NMEA
NMEA理監事集結產業代表,共思壯大台灣內容產業之道。
圖/ NMEA

她指出,高峰會結束後,NMEA也將以工作坊與共創計畫延續對話熱度,讓產業交流落地為實際行動。協會也積極拓展跨域合作,從企業交流、IP授權推動到媒體合作,串聯更多產業能量。

值得注意的是,自2022年起,高峰會同步啟動線上直播,三年累計已吸引超過20萬名觀眾參與,單屆觀看更突破8.1萬人次。李芃君認為,這不僅是數據表現,更代表台灣影視產業逐漸建立國際話語權。當產業以開放與創新的態度前行,才能在全球文化浪潮中,站上屬於台灣的舞台。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓