未來的維基百科,會由ChatGPT撰寫嗎?如果會,我們該相信嗎?
未來的維基百科,會由ChatGPT撰寫嗎?如果會,我們該相信嗎?

維基百科勝在知識結構清晰,ChatGPT長於具體問題,雙方未必不可調和。

22年前,2001年初,維基百科Wikipedia橫空出世,在其後的網路時代,成為人們獲取知識的重要平台。

但在剛開始,人們對維基「人人可編輯」的組織形式產生過質疑。甚至有電視主持人諷刺其為「wikiality」,即如果在維基百科上編造條目,只要有足夠多的人同意,它就會成為現實。

AI Tool ChatGPT
ChatGPT,能成為新的「維基百科」嗎?如果能,我們該相信嗎?
圖/ Photo by Sanket Mishra on Unsplash

後來,隨著《自然》(Nature)雜誌的調查研究,發現維基百科準確度接近大英百科全書,Google 開始把維基百科放到搜尋結果的首項,維基社區和內容貢獻者也持續壯大,維基百科用了很多年時間終於取得了公眾的信任。

誕生之初遭到質疑,越來越多人參與去完善,而後平反收到大眾認可,繼而成為日常的工具,這一過程,僅誕生半年的ChatGPT 正在經歷,不僅於此,它還成為了維基百科的挑戰者。

不久前,維基媒體基金會召開2023-2024年度計劃的電話會議,會議中提及了35次AI,討論的主題也是圍繞ChatGPT帶來的挑戰。

但維基百科所擔心的挑戰,並不是被ChatGPT 取代。而是更深刻地考驗:未來的維基百科,會由ChatGPT 來撰寫嗎?

維基百科的內容哪裡來的?

要想知道ChatGPT能否撰寫維基百科,得先知道維基百科目前內容來源於哪裡。

維基百科主要是由來自網路上的志願者共同合作編寫而成,任何使用網路進入維基百科的用戶都可以編寫和修改裡面的文章。它是網路上一個極大的自由內容、公開編輯、多語言的網路百科全書協作計劃。

截至2021 年初,所有語種的維基百科條目數量達5500 萬條,如何確保內容上的準確,全靠維基社群志願者們的篩查。

在ChatGPT 出現前,維基百科已經長期在用AI 去減少一些人力成本。應用最多的就是把現有條目直接機器翻譯,再由人工編輯校對。

2016 年時,資深科學家Aaron Halfaker 開發了一套開源機器學習演算法,可以自動識別維基百科里那些惡意破壞條目和編輯假消息的行為;2020 年,MIT 的研究人員也為維基百科推出過基於AI 的修改功能,可以精確定位維基百科句子中的特定資訊,並自動替換為類似於人類編輯的語言。

Wikipedia 關於ChatGPT 的頁面
Wikipedia 關於ChatGPT 的頁面
圖/ Wikipedia

以及如維基社群所述,人工智慧非常擅長總結把一篇很長的技術類條目,總結成兒童都能理解的版本,讓AI 去生成兒童版的維基百科效果很好。

翻譯、檢查、概括簡化已有內容,維基百科一直以來對AI 的應用僅限於此,直到大型語言模型ChatGPT 的出現。

目前仍以文字方式互動為主的ChatGPT,除了回答用戶直接的提問以外,還可以用於甚為複雜的語言工作,包括自動生成文本、自動問答、自動摘要等等。

ChatGPT可以寫出相似真人的文章,並在許多知識領域給出詳細和清晰的回答。哪怕ChatGPT 生成內容的事實準確度還需要人工去二次查閱,但這時維基百科面臨的問題已經很明顯了:志願者能否用ChatGPT來撰寫維基百科條目?

AI編寫維基百科,可以嗎?先從「能不能」和「想不想」思考起

紐約市維基媒體分會的老維基人Richard Knipel 就用ChatGPT在維基百科上起草了一個名為「藝術作品標題」的新條目,Knipel 表示,ChatGPT 給出的版本一般但語法正確,定義了藝術作品標題的概念,給出了從古至今的例子。他在草稿基礎上只做了輕微修改。

但另一位編輯在條目上標註,將會進行大量修改並完善。如今,我們再點進這一條目,會發現它增加了大量內容和理論索引,還梳理出了目錄,給出了圖片案例。像Knipel 這樣的維基人認為,ChatGPT 可以作為生成維基百科條目草稿、骨架的工具,在此基礎上,人工再驗證內容,編輯和充實條目。

但另一派維基人則認為,在維基百科條目的創作裡ChatGPT 應該完全被禁用。一位維基百科編輯就表示「我們應該強烈呼籲不使用AI工具來生成條目草稿,即使這些條目隨後會被人工審閱。ChatGPT 太擅長引入那些看起來很有道理的謊言。」

ChatGPT人工簡單編輯的版本
ChatGPT人工簡單編輯的版本
圖/ Wikipedia
人工大量干預後產生的版本
人工大量干預後產生的版本
圖/ Wikipedia

但另一派也反駁這種說法,就像Knipel認為,修改並豐富不完善的資訊,這就是維基百科在實踐中一直運作的方式。ChatGPT 將繼續存在並飛速發展,利用它同時強調人工干預的必要性怎麼就不行呢?把ChatGPT 上來就視作洪水猛獸實在有些偏頗。

但在想不想之前,我們先看看能不能。ChatGPT還夠不夠格直接編寫維基百科呢?

3月30日,維基百科創辦人Jimmy Wales在接受Evening Standard採訪時討論了這個議題。 Wales認為,讓ChatGPT能獨立寫一個完整的維基條目,目前還有一段距離,但距離多遠就難說了。「ChatGPT 的一大問題是會胡編亂造,業內把這種情況稱為hallucinating(幻覺)——我稱之為編瞎話。」 (One of the issues with the existing ChatGPT is what they call in the field 『hallucinating』—I call it lying.)

「ChatGPT 有一種憑空捏造的傾向,這對維基百科來說真的不太行。」Wales在採訪裡說道。實踐中也是如此,你在維基百科上搜一個詞,維基百科可能會反饋「該條目不存在」,但你問ChatGPT,它可能會給你生成一段沒來由的假消息。

ChatGPT會「說瞎話」,這種事已經不新鮮了。但ChatGPT 誕生僅半年,它的自我迭代能力已經令人咋舌,讓ChatGPT「句句吐真言」,似乎只是時間問題,那維基百科現在擔憂的是什麼呢?

人力有限,演算力「無限」

維基百科團隊並沒有那麼擔心內容到底來源於人類還是AI, 它擔心的是內容品質是否過關

在維基媒體基金會在電話會議總結報告裡,「挑戰」被放到了開篇,其中最大比重的部分,也是維基百科團隊最大的擔憂在於: 維基百科湧入大量AI生成的內容,把真正高品質的、正確的資訊給淹沒了。

「Wiki項目有大量高品質的、可靠的,結構化的、分類好的內容。這就是我們帶給世界的價值。最讓我害怕的不是人們使用GPT之類的大語言模型來獲取知識,而是需要巡查的AI生成的內容會爆炸式增長。」

對高品質內容來說,創作比消費的時間成本高很多,就像一篇較為完整的維基條目,需要許多人參與撰寫,花許多時間,走過很多流程後完成,對讀者來說幾分鐘就閱讀完了。

像維基百科這種平台,為了保證內容品質,還需要專業人士核查一條條目中每個資訊、數據、引用是否來源準確,篩查和編輯的成本同樣很高。因此AI生成內容越多,人工核查的時間也更長。而且哪怕ChatGPT給出了正確的結論,但它並不會直接給出結論的論據來源何處,人工還需要再找到論據。到最後,修正可能比撰寫耗時更長。

人工智慧 ai
經由AI編寫出的「資訊」需要人工查核,因為有可能只是胡謅的。
圖/ Canva

目前維基百科志願者們已經發現了許多ChatGPT 自動生成內容上的問題。 比如ChatGPT很容易太籠統地概括定義,導致表意不明。還有ChatGPT遣詞造句過於肯定,不夠匹配維基百科想呈現的客觀中性的文字風格。

最重要的是信源難以查詢,維基百科的可信度和擴展閱讀性,很大程度上是基於條目底下豐富的資訊參考來源,但ChatGPT 不會主動提供參考,甚至會憑空捏造。

擔任了20年維基百科志願編輯的Andrew Lih 在用ChatGPT 起草新條目時就發現,ChatGPT 概述定義做得很不錯,但它所提供的消息來源於《福布斯》、《衛報》、《今日心理學》, 但Lih仔細查閱後發現,這些來源文章並不存在,甚至ChatGPT給出的URL都是自動生成找不到頁面的假連結。

綜合以上,維基百科團隊直接表示,AI生成內容的速度和效率,可能會超出項目的運行能力。

除此之外,還有許多維基百科團隊會擔心的點,比如如今的維基百科貢獻者裡,使用英語的白人男性依舊是主體, 維基內容已帶有語言和內容偏見,ChatGPT靠吸納網路資訊為養料的AI 機器,生成出的內容會進一步放大偏見

Wikipedia 聯合創辦人Jimmy Wales 在接受Standard 採訪時談及AI參與撰寫
Wikipedia 聯合創辦人Jimmy Wales 在接受Standard 採訪時談及AI參與撰寫
圖/ Standard

維基百科團隊也無法把握志願者對AI 工具使用的傾向。Lih就認為,維基人不缺動力,缺的是時間,ChatGPT 生成的糟糕草稿,可以激發維基志願者的修改欲。這也符合維基之父Ward Cunningham 所提出的「坎寧安定律」:在網路上得到優秀答案的最佳方法不是去提問,而是發布一個錯誤的答案。

維基百科團隊還擔心,當維基百科充斥著AI 生成的內容時,用戶們會降低對它資訊的信任度,轉而去信任更有「人類作者」標識的媒體內容,比如會出鏡的影片,標記了作者的媒體報刊。

維基百科和ChatGPT,怎麼共存?

維基百科和ChatGPT有很多相似性,比如都以文本為主,試圖「回答一切」。但二者最顯著的區別,在於 回答方式的不同

維基百科是有框架、系統、詳細索引的百科式資訊,你點進一個條目,可以從最簡單的概括式介紹了解到其歷史的變化,通過條目裡豐富的擴展鏈接,可以在縱向裡深入了解,也能在橫向裡在不同條目之間跳轉,擴展對一整個領域的了解。

ChatGPT目前呈現出的還是提問式的互動,需要用戶明確了解自己想知道的問題,向外擴展也是需要建立在ChatGPT 給出的回答之上,進一步詢問。

不同用戶獲取資訊的傾向不同,選擇工具也不同,維基百科無法做到ChatGPT一樣能回答非常具體的問題,ChatGPT 也不會像維基百科一樣有那麼精準且梳理好的知識類資訊。 這二者的使用方式,就像我們選擇閱讀教科書,還是直接向教授提問。

就像維基百科並沒有因為搜尋引擎Google的崛起而磨滅,反而它會出現在Google搜尋結果的第一條和邊欄上。

維基百科團隊也並沒有如Google一般有那麼大的危機感,在年度會議裡,雖然開篇點了ChatGPT 帶來的挑戰,但整個會議更多的時間留給了「機會」。

AI帶給維基百科的機會

「當網路上有大量AI 生成的內容時會發生什麼?在一個由趙個低品質、低可信度的頁面組成的網路,創建大模型的人和用戶都需要去找到可靠的資訊,他們可能會更多地使用維基百科。 」這就是維基人眼中的「機會」。

利用大語言模型去查bug、翻譯、內容總結、豐富媒體形式,比如GPT-4中體現的影片生成,AI生成的圖片也可以放到很多抽象概念的條目裡,增加可讀性,還可以在文本和語音之間互相轉換。

但以上的前提,都是不能讓大語言模型打打輔助,不能喧賓奪主。「維基百科是關於人類聚集在一起試圖定義真相。這些工具不可靠,會分散我們對實際任務的注意力。我們應該小心要以多快的速度追趕這一趨勢,而不是放棄它。我們應該關注創造知識的人。」

維基百科團隊的態度,也折射了我們當下對AI的審慎態度。 沒有被取代,想充分利用AI 的同時不夠信任它,想發揮AI的最大價值,但真正有價值的內容又不敢輕易交付,難以放下人類本位的核心概念,謹慎地靠近,小心地追趕。

維基百科如何和大語言模型共存,或許就回答了我們人類如何與AI共存。

延伸閱讀:一則「火車撞死人」騙到上萬瀏覽!他用ChatGPT編假新聞遭逮,怎麼防AI假訊息

本文授權轉載自:極客公園

責任編輯:傅珮晴、林美欣

往下滑看下一篇文章
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎

騰雲科技持續展現強勁成長,不僅連續五年維持雙位數的營收增幅,更於 2025 年前三季累計營收來到 5.47 億元、淨利 1.03 億元,年成長率高達 67%,顯示騰雲科技已從智慧零售解決方案供應商擴展成為智慧社區、智慧城市解決方案供應商,並持續發揮高毛利、高成長、以智慧場域資料為核心驅動的代理式 AI 解決方案全方位供應商。

騰雲科技是怎麼辦到的?

騰雲科技董事長暨總經理梁基文不藏私分享兩大關鍵:「首先是以 AI 賦能的產品與服務,協助客戶提升效率、優化營收;其次是透過騰雲孵化器與其生態系中新創夥伴協作,打造零售、不動產、製造與數位保險等產業所需的新商務服務。」

以 AI 賦能全產品線,強化客戶黏著度、深化長期關係

梁基文表示:「AI 不是單一產品或立即變現的技術,要能有效消除資訊不對等,需協助企業先將散落的資料整合成數據資產,才能找出能驅動決策的洞察。」因此,要讓 AI 真正落地,需要同時理解產業現況與營運痛點的夥伴,才能把技術與數據轉化為具體價值,成為企業成長的新引擎。

有鑑於此,騰雲科技的策略是推出 AI Agent 平台 –TrendVotex,由深耕百貨零售、商業不動產等產業的專業團隊協助打造符合場景需求的 AI 代理服務。

例如,為百貨零售打造的「AI 品牌行銷專家」透過市場輿論進行趨勢及同業動態分析、以口碑行銷進行品牌塑造、針對會員數據進行自動化文案生成及傳播、針對行銷成果進行效益分析等自動化決策,「AI 招商助理」則能整合商圈熱度、樓層營運狀態等資訊,提出精準的櫃位調整與招商策略。至於針對複合式商業不動產管理場景推出「AI 能源智慧管理」服務,導入 AIoT 終端裝置佈署並運用其感測數據與歷史異常紀錄,預測設備故障風險,協助排程維修,降低停機時間,大幅提升營運績效。

梁基文補充說明:「除了協助企業打造專屬 AI 代理與串接代理式工作流程(Agentic Workflow),我們也推出 Marketing、Content、Sales、Manufacturing 等跨產業可重複使用的 AI 代理模組,加速零售、不動產、製造、旅遊與數位保險服務等產業的導入腳步。」

值得注意的是,為真正發揮、極大化 AI 價值,騰雲科技不僅提供技術,也協助企業梳理流程、整合分散數據,打造可支撐多場景的數據驅動營運中台。

梁基文表示,不只零售業正加速虛實通路整合,製造與金融服務業也十分重視「全通路數據」,例如製造業需要即時掌握生產過程關鍵數據指標與庫存狀況以確保良率及產能、數位保險業則積極深化對顧客旅程的掌握以完善服務能量等,騰雲科技推出「隨開即用」、雲地整合的 AI 平台,讓企業能在多場景中無縫串接數據並兼顧資訊安全,充分展現「From Insight to Intelligence」價值。

例如,協助數位保險整合顧客的「線上資料(如客戶資料、風險判斷」與「線下數據(如客戶活動數據、場域營運數據)」,透過 AI 進行產品推薦、簡化內部核保作業流程,並提供更加順暢的一致體驗,讓保險也能像零售一樣真正做到懂顧客。

「接下來,我們會把在百貨零售與商業不動產驗證過的技術,進一步擴大到製造、數位保險等產業,讓價值放到最大。」梁基文如是說道。

騰雲科技
騰雲科技董事長暨總經理梁基文
圖/ 數位時代

五大技術、四大產業,騰雲科技以孵化器成就下一個十年

梁基文表示:「過去 10 年,我們專注在『新零售・新生活』;接下來將延伸至『新商務・新生活』,透過收購、合資、投資等方式與外部夥伴共創新的成長動能。」

具體做法是以 ABCDE(AI、Blockchain、Cloud、Data、Experience)五大技術為核心,鎖定零售、不動產、製造與金融服務四大產業,透過外部合作與孵化機制強化解決方案的廣度與深度:整合現場設備、門市裝置、POS、排隊系統、取貨流程、感測器與後勤運作,推出 AIoT 智慧場域管理方案,滿足跨場域、跨產業與跨國企業的需求。

例如,協助泰國五星級酒店導入 AIoT 智慧場域管理方案以優化能源設備管理、降低營運成本並提升使用者體驗等。明(2026)年,騰雲科技計畫將 AIoT 智慧場域管理方案推向製造業廠房,協助客戶管理冷氣、燈光等能源設備並進行碳管理,同時,透過監控產線設備的振動與溫度等數據,提供 AI 預判的設備維修時機(Preventive Maintenance),擴大數位與綠色雙軸轉型的綜效。

除以集團力量推廣 AIoT 智慧場域管理方案,騰雲科技亦積極擴大相應的生態體系發展:首先是與跨業夥伴一同延伸 AIoT 智慧場域管理方案 的應用範疇,如與保險業者合資成立數位保險公司以提供 AI-Ready 數位應用方案;其次是建立消費者生態體系以發揮「新商務‧新生活」的相互影響綜效。例如,騰雲科技子公司騰加數位將擴大 AIoT 平台運營版圖,深入零售、商辦與飯店等多元場景,並以此為載體整合數位支付、會員數據與數位內容傳播等應用,藉此強化場域的智慧化能力,以及拓展騰雲解決方案的落地深度與廣度。

「透過 AIoT 智慧場域管理方案、營運中台與 TrendVotex 等產品與服務,我們不僅能更精準回應台灣、日本與東南亞市場在流程自動化、營運效率提升上的需求,也能同步改善大眾的日常體驗,真正落實『新商務・新生活』的共好價值。」關於未來的發展,梁基文如是總結。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓