只要把提示詞「說兩次」,LLM效能就升級?Google研究曝「47勝0敗」高CP值解方
只要把提示詞「說兩次」,LLM效能就升級?Google研究曝「47勝0敗」高CP值解方

在當前 AI 競爭圖譜中,效能提升往往與算力成本、推理延遲掛鉤。然而,Google Research 團隊最新的研究卻提出了一個反直覺的「低成本」方案:僅透過重複輸入指令(Prompt Repetition),即可在不增加輸出長度的前提下,顯著優化跨模型的效能表現。

要強調的是,這項技術不僅僅是「重複一遍」,它是對因果語言模型(Causal LLMs)注意力機制缺陷的一種技術性補償,為企業級 AI 部署提供了一條極高性價比的升級路徑。

因果語言模型的「單向注意力」瓶頸

為什麼「說兩次」就會對AI的生成結果有幫助?

這是因為當前主流 LLM 架構多為 Causal Language Model,其處理序列的底層邏輯存在一個物理限制:因果性遮罩(Causal Masking)。在模型處理過程中,第 N 個 Token 只能觀察到第 1 至 N-1 個 Token,無法預見「未來的資訊」。

不要慌!這邊所謂的「未來資訊」,主要是指「輸入提示詞(Input Prompt)中尚未讀到的後半段內容」

假設提示詞結構: 「<問題> <文章背景>」

那所謂的因果性遮罩,就是指AI模型讀到開頭的 「<問題>」 時,它在運算當下完全看不到後面還有 「<文章背景>」,因為模型在讀取提示詞時,跟人類一樣也是由左至右、一個字一個字讀的。這對模型理解問題造成了困難,因為它必須在缺乏背景資訊的情況下先處理「問題」。

這就是為什麼提示詞的順序會影響表現。如果您把問題放在最後,模型讀到問題時已經看過文章了;但如果把問題放在最前,模型就「看不到未來(後面的文章)」。無論是哪種順序,都還是讓AI的注意力維持單向。

提示詞重複如何破解「單向注意力」瓶頸?

根據這份報告的發現,所謂的「提示詞重複」(Prompt Repetition)操作非常直觀且簡單。報告中明確指出,這項技術的核心是將原本的輸入 「<提示詞>」 轉換為 「<提示詞><提示詞>」。操作原理如下:

  • 調整後提示詞結構: 「<問題><文章背景> <問題><文章背景>」

其效果就是,當模型讀到第二遍的開頭(即第二個 <問題>)時,原本屬於「未來」的 <文章背景>(在第一遍中),現在已經變成了「過去」的歷史資訊。

報告中提到,這種近乎土炮的方式之所以有用,是因為讓提示詞中的每一個 Token 都能夠「注意到(Attend to)」提示詞中的其他所有 Token,從而模擬出雙向注意力(Bidirectional Attention)的效果。

這種提示詞「說兩次」的招數,適用於哪些情境?

研究針對 Gemini 2.0、GPT-4o、Claude 3.7 及 DeepSeek V3 等 7 種模型進行測試,在 70 項基準測試中取得了 47 勝 0 敗 的驚人紀錄。

以下歸納出最適合使用此招數的兩大情境:

不要求模型推論時

這是最關鍵的判斷標準。如果您的應用場景不需要模型「一步步思考」(Chain of Thought, CoT),這招效果最好。

  • 適用原因: 當模型不進行 CoT 推理時,它往往是一次性直出答案。報告顯示,在這種「非推理模式」下,提示詞重複在 70 個測試中贏了 47 次,且0 次失敗,,。
  • 反之: 如果您已經使用了「Think step by step」等提示詞,重複輸入的效果會變成中性或僅些微提升(5 勝 1 敗 22 平),因為 CoT 本身就會讓模型在輸出時自我重複部分資訊,使得輸入端的重複變得多餘,。
模型比較
研究用多個熱門模型(Gemini、GPT、Claude、DeepSeek)和七種基準測試驗證,結果顯示「不開啟推理」時,重複提示在 70 組測試裡贏了 47 組、零敗。
圖/ Google

長文本中的「精確檢索」與「定位」

如果您的任務是要求模型在一段很長的文字中,找出某個特定的資訊,這招的效果最為驚人。

  • 具體案例:

找名字(NameIndex): 例如給定 50 個名字,問「第 25 個名字是誰?」。在 Gemini 2.0 Flash-Lite 的測試中,準確率從原本的 21.33% 飆升至 97.33%,。

找夾心(MiddleMatch): 例如給定一長串名單,問「誰位於某甲和某乙的中間?」。這類任務需要模型精確定位前後關係,重複提示詞帶來的增益非常強勁,。

  • 建議: 對於這類較困難的查找任務,報告甚至建議可以考慮重複 2 次(即總共輸入 3 遍,Repetition x3),效果可能比標準的重複 1 次更好。

重複提示詞不是萬靈丹?

根據這份報告的實驗結果與文獻回顧,雖然「提示詞重複」在許多情況下能顯著提升效能,但在以下 2種特定情境中,此方法可能無效:

已經啟用「推論模式」或思維鏈 (CoT) 時

這是最主要的不適用情境。如果您在提示詞中加入了「一步步思考」(Think step by step)或是使用了像 OpenAI o1 、Gemini 3 這類內建強大推理能力的模型,重複提示詞的效果會大打折扣。

  • 效果判定: 結果呈現中性至僅些微正面(實驗中為 5 勝 1 敗 22 平),不再具有壓倒性優勢,。
  • 原因: 報告指出,當模型進行推理(Reasoning)時,它們通常會在輸出的過程中自己重複提示詞的關鍵部分。既然模型已經會在輸出端「自我重複」,那麼在輸入端手動重複就顯得多餘且沒必要了。

提示詞已經「極度」過長

雖然報告強調「重複提示詞」通常不影響生成延遲,但在極端情況下會有物理限制。例如原本的提示詞已經非常接近模型的 Context Window(上下文視窗)上限,再重複一次可能會導致超出長度限制而無法執行

報告在附錄中提到,對於 Anthropic 的模型(Claude Haiku 和 Sonnet),當處理非常長的請求(例如 NameIndex 任務搭配 3 次重複)時,延遲確實會增加。這可能是因為「預填充(Prefill)」階段的運算時間變長了。

操作要點:真的重複貼上就好

若原本的提示詞包含了「背景資訊(Context)」與「問題(Question)」,操作上真的只需要將這整段內容完整複製並貼上一次即可。

通用公式:

最終提示詞 = [完整原始提示詞] + [完整原始提示詞]

舉例而言,一段沒有重複的原始提示詞如下:

這裡有一份名單:Dale Lopez, Peter Sanchez, Allen Harris...(略)。 請問名單上的第 25 個名字是誰?

那麼,符合報告定義的「重複提示詞」如下:

這裡有一份名單:Dale Lopez, Peter Sanchez, Allen Harris...(略)。 請問名單上的第 25 個名字是誰? 這裡有一份名單:Dale Lopez, Peter Sanchez, Allen Harris...(略)。 請問名單上的第 25 個名字是誰?

值得注意的是,重複的範圍必須是整個提示詞。如果只是單純重複「問題」部分(例如只重複問句而不重複文章背景),在相關研究中顯示並無效果。

結語:懂推論的模型就別用這招了

總結來說,報告測試並驗證了以下模型適用:

  • Google: Gemini 2.0 Flash, Gemini 2.0 Flash Lite
  • OpenAI: GPT-4o, GPT-4o-mini
  • Anthropic: Claude 3 Haiku, Claude 3.7 Sonnet
  • DeepSeek: Deepseek V3

最後,Prompt Repetition 可說是 LLM 應用層的一次「優雅補救」。它餘解決了因果模型先天的結構短板。在追求 AGI 的路上,回歸底層邏輯的簡單方案,往往才是最具商業穿透力的破局點。

延伸閱讀:Google公布Gemini收費新制!拆分「思考型」與「Pro」額度,一表看懂方案差異

資料來源:arxiv

本文初稿為AI編撰,整理.編輯/ 李先泰

往下滑看下一篇文章
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作

現代人手機不離手,通勤時滑短影音、午休追串流影劇、下午開視訊會議,網路影音應用成為工作與生活的普遍情境。然而,一旦畫面卡頓、畫質不穩,或聲畫不同步,使用體驗立刻打折,甚至影響工作效率與專業判斷。

也因此,網路品質不再只是「快不快」的問題,更關乎能否在高使用量的日常情境下,維持穩定、連續的表現;對此,第三方評測也採用更貼近使用者情境的方式衡量網路體感。而 Opensignal 最新報告指出,台灣大哥大在影音體驗相關項目是業界唯一同時拿下「影音體驗」與「5G 影音體驗」雙項獎項的電信商,其中,關鍵的差異是什麼?

為何「影音體驗」是網路品質的關鍵指標?

愈來愈多消費者入手旗艦機,追求的不只是硬體規格,還有流暢的 AI 應用與多工協作。然而,無論是視訊即時翻譯或雲端會議,這些高階功能都有一個共同前提:網路必須穩定。一旦網路品質不佳導致畫質下降或音畫不同步,旗艦級的 AI 功能將形同虛設。

這也意味著,檢驗網路價值的標準已經改變。如今,不能只看單點測速的瞬間峰值,更重要的是高負載情境下的耐力表現。因此,比起單點測速,影音體驗會是更完整的測試標準,直接挑戰了網路在室內深處、移動途中或人潮聚集時的網路實力;而唯有在長時間串流下依然不卡頓、不降畫質,才稱得上是高品質的連線。

換言之,隱身在硬體背後的電信商,才是發揮旗艦機性能的關鍵;唯有透過最佳網路品質,才能讓手中的旗艦機既是規格領先、也是體驗領先。

唯一影音體驗雙料冠軍,Opensignal 權威認證的有感體驗

雖然相較於測速數據,影音體驗更貼近日常使用,但也更難量化。對此,國際權威認證 Opensignal 的「影音體驗分數」,依循 ITU 國際標準,透過真實用戶裝置在行動網路上進行影音串流的實測數據,觀察不同電信網路在實際使用情境下的表現。

簡單來說,評測聚焦三項核心指標:影片載入時間、播放期間的卡頓率,以及畫質(解析度)是否能穩定維持。使用者從開始播放到持續觀看的整體品質,分數以 0–100 呈現,分數愈高,代表在三項指標的表現愈佳。相較於單點測速,這類評測更能呈現長時間、高使用量下的網路品質。

人流情境不降速.jpg
圖/ 數位時代

而在今年最新公布的 Opensignal 評測中,台灣大哥大獲得「影音體驗」獎項唯一雙料冠軍。其中,「整體影音體驗」為全台獨得第一名,「5G 影音體驗」則與遠傳並列第一。

之所以能在影音體驗拔得頭籌,關鍵在於台灣大哥大目前是全台唯一整合 3.5GHz 頻段 60MHz 與 40MHz、形成 100MHz 總頻寬的電信業者,亦是現階段全台最大 5G 黃金頻寬配置。頻寬愈寬,代表單位時間內可傳輸的資料量愈大;在大量使用者同時進行影音串流、視訊互動的狀態下,更能維持穩定傳輸、減少壅塞發生機率。

台灣大獲權威認證,NRCA技術撐起穩定基礎

除了頻寬帶來的流量優勢,台灣大哥大也採用「NRCA 高低頻整合技術」,也就是透過高低頻協作,讓 3.5GHz 負責高速傳輸、700MHz 補強覆蓋與室內連線,改善室內深處與移動情境的訊號落差,提升連線連續性。

同時,為了讓住家、通勤動線、商圈與觀光熱點等高使用場域維持穩定表現,台灣大哥大已在全台超過213個住宅、觀光及商圈熱點完成 100MHz 布建,提升人流密集區的網路覆蓋率。

5G高速(小).jpg
圖/ dreamstime

值得注意的是,在今年的 Opensignal 評比中,台灣大哥大還拿下了「5G 語音體驗」與「網路可用率」兩項第 1 名,累計獲得 4 項獎項。這意味著不僅具備影音體驗優勢,在語音互動與連線率等關乎用戶日常應用的基礎指標,皆有亮眼成績。

尤其,隨著影音與即時互動成為新世代的工作常態,網路品質的重要性只會持續上升。無論是遠距協作所仰賴的視訊與畫面共享即時同步,內容創作對直播與即時上傳連續性的要求,或是 AI 視訊互動、即時翻譯與會議摘要等新應用,都高度依賴低延遲與穩定的資料傳輸。網路品質因此不再只是連線條件,更是支撐內容生產、協作效率與新應用落地的基礎能力,甚至直接牽動競爭力。

而台灣大哥大經 Opensignal 認證、於多項關鍵指標領先業界,不僅將成為 AI 時代的重要後盾,也讓使用者能更充分發揮高階手機的效能,把「快、穩、滑順」落實在每天的工作與生活中。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓