台灣最大串流音樂服務的大腦:KKBOX研究中心
台灣最大串流音樂服務的大腦:KKBOX研究中心

「你可以從一個人的歌單,了解他是怎樣的人。」電影《曼哈頓戀習曲》裡是這麼說的。透過KKBOX的新演算法,未來,「以歌單辨人」的準確度又更高了。

今年10月,KKBOX發表了一套與台大、政大、中研院資料科學專家合作開發的演算法,數據顯示,新演算法上線後,用戶開啟KKBOX後的跳出率減少25%,App的點擊互動率成長近四成,最驚奇的是,用戶透過新版的「發現」功能,聽到的歌曲有七成以上是一周前沒聽過的新歌。而這套演算法的幕後功臣,就是KKBOX研究中心(Research Develop Center, RDC)。

KKBOX RDC團隊專訪_20161227_吳晴中攝_0009.JPG
前排由左至右為研究中心機器學習組經理陳怡安、產品經理鐘季倫、產品經理王璽;後排由左至右為研發工程師實習生戴筱芸、研發工程師簡均瀚、產品開發中心副總經理林華、研發工程師祁恒昱。
圖/ 攝影/吳晴中

互動越多,才能更了解你

KKBOX研究中心成立於四年前,分為「機器學習(Machine Learning)」和「資料科學(Data Science)」兩大組別,目前研究中心成員約十多人,兩個組別人數大約各占一半。

機器學習組的工作內容是運用演算法提升產品功能,同時也和學界密切合作,從實驗室的前期探索中找尋產品化的機會。而資料科學組則是負責收集和分析大量用戶資料,比方說用戶的使用頻次、付費狀況、興趣和喜灣的藝人等,並以此預測用戶未來的行為、提供更個人化的服務。

平時,這兩個組別和公司各個部門都有緊密互動。以資料科學組來說,業務性質就會和營運策略規劃部(Business Insights team)、行銷、商業開發部門有關,透過資料科學組提供的數據,其他部門可以知道過去操作的成效或預測未來行銷成績。機器學習組則和產品功能最接近,產品經理、工程師、編輯和外部專家都是合作對象。

兩個團隊各司其職,但彼此也相輔相成。「機器學習背後其實有非常多的factor(因素),可是到底哪一些factor真的對我們實際做出來的功能、使用者用起來是有感的?這些都需要資料科學來協助。」負責帶領研究中心的產品開發中心副總經理林華說。

KKBOX RDC團隊專訪_20161227_吳晴中攝_0004.JPG
KKBOX產品開發中心副總經理林華。
圖/ 攝影/吳晴中

她指出,數位產品的優點就是可以追蹤使用者的每一個步驟。一般來說,使用者聆聽音樂時,可分為「主動式聽歌」(lean forward)和「被動式聽歌」(lean back)兩種行為模式。前者是使用者很清楚自己現在要找哪一個歌手、哪一首歌曲,而後者則是跟著編輯挑選的歌單加上系統推薦的音樂,或是開啟電台模式,讓系統自動推送歌曲。

「主動和消極被動,其實意圖差很多。同樣是聽過一首歌,這首歌是你自己找來反覆聽的,還是你跟著(歌單)聽過,沒有對這首歌產生任何互動?我們在做個人化推薦的時候,很多訊號都會挖出來看。」林華說,他們會透過數據觀察用戶對音樂的意圖,並跟著優化演算法,而那些「用戶雲淡風輕跟著聽過去、毫無感覺而且只聽過一次兩次的歌」,就會被排在比較後面。也就是說,用戶的互動行為越多,KKBOX就會越了解你。

林華表示,目前在KKBOX用戶中,主動式聽歌和被動式聽歌這兩種類型的用戶比例難以量化比較,不過她認為,當推薦系統做得越來越好時,被動式聽歌的比例應該會逐漸增加。「我們當然是希望使用者越省力越好!」她笑說。

讓用戶越聽越多元

新版演算法專案是在今年春天正式啟動,不過在這之前,研究中心早已做過多次測試和優化。「其實我們在舊的首頁就已經偷偷先行AB test了。」研究中心機器學習組經理陳怡安說。

她指出,過去,KKBOX的首頁是採用規則導向(Rule-Based)推薦,先掌握使用者喜歡的歌手和曲風後,再以比對方式推薦歌曲給使用者。規則導向演算法雖然簡單直接且容易解釋,但是也有極限。「因為每個人喜歡的都不一樣,所以你可能要為這群人建立很多規則,但是在整體CTR(點閱率)的表現上,很難去做系統性的優化。」

KKBOX RDC團隊專訪_20161227_吳晴中攝_0001.JPG
KKBOX研究中心機器學習組經理陳怡安。
圖/ 攝影/吳晴中

但如果是透過機器學習,效能反而更高。「今天有CTR這個目標,我就用點擊紀錄把這些資訊萃取出來。這些點擊紀錄代表我要追尋的目標,所以這些人和物的特質就變成feature。透過機器學習演算法,可以把這些人和物的feature加以演算,排在前面。」不過相對來說,機器學習也較為繁瑣和複雜,需要花費更多心力。

新版演算法推出已快三個月,從數據看來,研究中心的苦心沒有白費。林華表示,明年1月還會推出「tell us what you like」的功能,當新用戶進到KKBOX,可以先挑選幾種自己喜歡的曲風,讓系統自動配對該類型的熱門歌手,就像是跟KKBOX做「自我介紹」一樣。

陳怡安觀察,台灣用戶普遍習慣聽熟悉的音樂,比較少主動聆聽新歌。不過,到今年8月為止,KKBOX曲庫內的歌曲數已經超過3千萬首,不多方嘗試實在有點可惜。「我們最終目標,就是希望大家越聽越多元!」她說。

往下滑看下一篇文章
玩手遊也能賺回饋?ShopBack Play 讓你零碎時間也能玩出現金回饋
玩手遊也能賺回饋?ShopBack Play 讓你零碎時間也能玩出現金回饋

通勤、排隊、等餐時,幾乎人人都在滑手機。零碎時間變多、也變得更密集,消費者在社群與影音之間來回切換,也更常打開遊戲。根據資策會 MIC 統計,台灣有 69% 網友會玩數位遊戲,近 8 成每日遊戲時長落在 2 小時內,輕度、碎片化已成主流。

這股趨勢,與 ShopBack 東亞區總經理 Arthur Wan 的觀察不謀而合。「大家在零碎時間裡,經常會拿起手機玩手遊,找個方式殺時間、放鬆心情。」因此,ShopBack 把視角轉向遊戲場景,推出 ShopBack Play,嘗試把娛樂轉化為「好玩、也能賺」的新型回饋體驗,讓回饋不必等到消費發生,日常零碎時間也能累積回饋。

從手遊場景打造現金回饋新模式

Arthur Wan 指出:「ShopBack 在台灣市場落地 8 年了,核心強項始終是電商回饋機制。」然而,若回饋只綁在購物,使用頻率終究受限於消費需求。對此,ShopBack Play 借助手遊的高黏著、高回訪特性,把回饋從交易場景延伸到日常互動;使用者不需消費,只要下載並完成指定任務,就能累積現金回饋,平台也因此更貼近使用者的日常生活。

這也呼應近年全球竄起的「X to Earn」模式。Arthur Wan 解釋,從 Shop to Earn 把消費轉成回饋、Play to Earn 讓玩樂產生回饋,到 Move to Earn 讓移動與運動也具備回饋可能,市場正在探索「參與行為」的價值:「愈來愈多日常行為,其實都能透過特定場景轉化為實際獲益。」

ShopBack Play 的優勢在於回饋可轉移。過往遊戲獎勵多停留在虛擬世界,例如兌換道具;但透過 ShopBack,玩家取得的現金回饋可直接延伸到電商與日常消費,讓娛樂回報更實用、更有感。

SHOPBACK圖說一.jpg
ShopBack 東亞區總經理 Arthur Wan
圖/ 數位時代

引發使用者越玩越賺的回饋循環

ShopBack Play 的使用方式很簡單。在 ShopBack App 首頁進入遊戲專區選定遊戲後,系統即導流至 App Store/Google Play 下載並開玩;玩家只要破關或完成指定里程碑,就能回到 ShopBack 形成「選遊戲→開玩→達標領回饋→再探索」的回訪循環。為了加碼誘因,ShopBack Play 也不定期推出「紅色遊戲專區 2 倍回饋」活動。

Arthur Wan 觀察,「消費者其實並沒有那麼忠誠於某一款特定遊戲。」多數人打開手遊,只是想放鬆、填補空檔,對單一遊戲的黏著度不高。也因此,ShopBack Play 目前合作超過 400 款遊戲,並規劃於 2026 年持續更新合作清單,讓使用者隨時有新選擇可玩。

「我們希望透過遊戲回饋,創造更多回訪的理由。」 Arthur Wan 表示,這也補上 ShopBack 的互動頻率缺口。由於 ShopBack 核心仍以購物回饋為主,熱門品類多集中在旅遊與時尚(如 Booking.com、Trip.com、KKday、Klook,以及 adidas、Nike、GU),消費頻次相對較低;ShopBack Play 則提供更日常、更高頻的回訪動機,讓使用者更常打開 App。

他指出,ShopBack Play 上線後帶動每月回訪 ShopBack 的使用者數成長 15%,整體使用者 CLV(Customer Lifetime Value,顧客終身價值)成長 30%,顯示回饋場景擴張確實見效。且透過遊戲接觸到 ShopBack 的使用者中,也有相當比例會進一步前往平台其他商家消費,形成交叉銷售效應(Cross-sell),推升平台使用深度與消費頻率。

讓回饋生態系融入生活空檔

將回饋帶入用戶生活中的更多片段,讓原本就會經歷的日常時刻變得更有價值,是 ShopBack 持續拓展「行為換回饋」場景的核心思維。對遊戲廠商而言,長期痛點在於下載成本高、留存率偏低,最怕「下載了就走」:數字漂亮,卻沒有實際遊玩行為,轉換與 ROI 難以落地驗證。對此,ShopBack Play 把回饋門檻從「下載」改為「達標」──使用者必須完成指定關卡或里程碑才拿得到回饋,藉此濾掉無效流量,讓導入更貼近真實參與,也更有利於提升轉換率與投資報酬。

對許多用戶而言,遊戲早已是生活的一部分。現在透過 ShopBack Play,不僅能在零碎時間中放鬆娛樂,更能完成任務獲得實質回饋 ,讓「玩遊戲」與「破關」不再只是虛擬成就,而是能實際折抵日常開銷的量化報酬。對 ShopBack 而言,不僅提升用戶在平台內的互動頻率,也補強過去必須透過消費行為才能獲得回饋的單一路徑。透過遊戲機制,用戶即使在非購物場景中也能保持接觸,並於任務完成後自然回流 App,進一步探索購物優惠與合作商家,打造高頻率且正向的使用循環。

也因此,ShopBack Play 推出後的亮眼表現,更進一步驗證這套機制具備高度潛力與市場接受度。據平台統計,功能上線後短短半年內,用戶數成長 12 倍,其中近 60% 為原本的 ShopBack 使用者首次接觸手遊,成功帶動原有會員活躍與新型態行為轉換。除了使用數提升,ShopBack Play 的回饋金發放規模亦快速擴大,自功能上線以來,累計回饋金額已接近 1 億元,展現「遊戲回饋」模式的強勁吸引力與發展性。

隨著 ShopBack Play 與購物回饋、載具回饋機制整合,平台逐步建構出「玩能賺、買能賺、日常生活也能賺」的循環回饋生態系,不僅為用戶帶來更即時、更有感的回饋體驗,也持續深化 ShopBack 在消費日常中的角色。

「ShopBack Play 只是起點。」ShopBack 東亞區總經理 Arthur Wan 認為,當消費者愈來愈精打細算、也更習慣用行為換取回報,未來仍有更多「X to Earn」場景值得探索與開發。「對我們來說,關鍵不只是推出一個新服務,而是持續擴大回饋觸發點,從線上購物、實體場景一路延伸到遊戲入口,串連商家與用戶的日常接觸,讓回饋真正融入生活,讓每一個日常時刻,都更有所得。」

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓