台灣最大串流音樂服務的大腦:KKBOX研究中心
台灣最大串流音樂服務的大腦:KKBOX研究中心

「你可以從一個人的歌單,了解他是怎樣的人。」電影《曼哈頓戀習曲》裡是這麼說的。透過KKBOX的新演算法,未來,「以歌單辨人」的準確度又更高了。

今年10月,KKBOX發表了一套與台大、政大、中研院資料科學專家合作開發的演算法,數據顯示,新演算法上線後,用戶開啟KKBOX後的跳出率減少25%,App的點擊互動率成長近四成,最驚奇的是,用戶透過新版的「發現」功能,聽到的歌曲有七成以上是一周前沒聽過的新歌。而這套演算法的幕後功臣,就是KKBOX研究中心(Research Develop Center, RDC)。

KKBOX RDC團隊專訪_20161227_吳晴中攝_0009.JPG
前排由左至右為研究中心機器學習組經理陳怡安、產品經理鐘季倫、產品經理王璽;後排由左至右為研發工程師實習生戴筱芸、研發工程師簡均瀚、產品開發中心副總經理林華、研發工程師祁恒昱。
圖/ 攝影/吳晴中

互動越多,才能更了解你

KKBOX研究中心成立於四年前,分為「機器學習(Machine Learning)」和「資料科學(Data Science)」兩大組別,目前研究中心成員約十多人,兩個組別人數大約各占一半。

機器學習組的工作內容是運用演算法提升產品功能,同時也和學界密切合作,從實驗室的前期探索中找尋產品化的機會。而資料科學組則是負責收集和分析大量用戶資料,比方說用戶的使用頻次、付費狀況、興趣和喜灣的藝人等,並以此預測用戶未來的行為、提供更個人化的服務。

平時,這兩個組別和公司各個部門都有緊密互動。以資料科學組來說,業務性質就會和營運策略規劃部(Business Insights team)、行銷、商業開發部門有關,透過資料科學組提供的數據,其他部門可以知道過去操作的成效或預測未來行銷成績。機器學習組則和產品功能最接近,產品經理、工程師、編輯和外部專家都是合作對象。

兩個團隊各司其職,但彼此也相輔相成。「機器學習背後其實有非常多的factor(因素),可是到底哪一些factor真的對我們實際做出來的功能、使用者用起來是有感的?這些都需要資料科學來協助。」負責帶領研究中心的產品開發中心副總經理林華說。

KKBOX RDC團隊專訪_20161227_吳晴中攝_0004.JPG
KKBOX產品開發中心副總經理林華。
圖/ 攝影/吳晴中

她指出,數位產品的優點就是可以追蹤使用者的每一個步驟。一般來說,使用者聆聽音樂時,可分為「主動式聽歌」(lean forward)和「被動式聽歌」(lean back)兩種行為模式。前者是使用者很清楚自己現在要找哪一個歌手、哪一首歌曲,而後者則是跟著編輯挑選的歌單加上系統推薦的音樂,或是開啟電台模式,讓系統自動推送歌曲。

「主動和消極被動,其實意圖差很多。同樣是聽過一首歌,這首歌是你自己找來反覆聽的,還是你跟著(歌單)聽過,沒有對這首歌產生任何互動?我們在做個人化推薦的時候,很多訊號都會挖出來看。」林華說,他們會透過數據觀察用戶對音樂的意圖,並跟著優化演算法,而那些「用戶雲淡風輕跟著聽過去、毫無感覺而且只聽過一次兩次的歌」,就會被排在比較後面。也就是說,用戶的互動行為越多,KKBOX就會越了解你。

林華表示,目前在KKBOX用戶中,主動式聽歌和被動式聽歌這兩種類型的用戶比例難以量化比較,不過她認為,當推薦系統做得越來越好時,被動式聽歌的比例應該會逐漸增加。「我們當然是希望使用者越省力越好!」她笑說。

讓用戶越聽越多元

新版演算法專案是在今年春天正式啟動,不過在這之前,研究中心早已做過多次測試和優化。「其實我們在舊的首頁就已經偷偷先行AB test了。」研究中心機器學習組經理陳怡安說。

她指出,過去,KKBOX的首頁是採用規則導向(Rule-Based)推薦,先掌握使用者喜歡的歌手和曲風後,再以比對方式推薦歌曲給使用者。規則導向演算法雖然簡單直接且容易解釋,但是也有極限。「因為每個人喜歡的都不一樣,所以你可能要為這群人建立很多規則,但是在整體CTR(點閱率)的表現上,很難去做系統性的優化。」

KKBOX RDC團隊專訪_20161227_吳晴中攝_0001.JPG
KKBOX研究中心機器學習組經理陳怡安。
圖/ 攝影/吳晴中

但如果是透過機器學習,效能反而更高。「今天有CTR這個目標,我就用點擊紀錄把這些資訊萃取出來。這些點擊紀錄代表我要追尋的目標,所以這些人和物的特質就變成feature。透過機器學習演算法,可以把這些人和物的feature加以演算,排在前面。」不過相對來說,機器學習也較為繁瑣和複雜,需要花費更多心力。

新版演算法推出已快三個月,從數據看來,研究中心的苦心沒有白費。林華表示,明年1月還會推出「tell us what you like」的功能,當新用戶進到KKBOX,可以先挑選幾種自己喜歡的曲風,讓系統自動配對該類型的熱門歌手,就像是跟KKBOX做「自我介紹」一樣。

陳怡安觀察,台灣用戶普遍習慣聽熟悉的音樂,比較少主動聆聽新歌。不過,到今年8月為止,KKBOX曲庫內的歌曲數已經超過3千萬首,不多方嘗試實在有點可惜。「我們最終目標,就是希望大家越聽越多元!」她說。

往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓