AI真正的主戰場在硬體
AI真正的主戰場在硬體

別誤會了,我熱愛軟體。

我只是覺得這一波已經接近尾聲——如果不是已經過了尾聲——的精實新創浪潮下,太多投資人和創業家口中念念有詞的、關於軟體新創的論點不過是一堆狗屁。

比這些關於軟體新創的狗屁更狗屁的,是毫無根據就把硬體投資視為過時的、難以產生回報的論點,即使面對了市場上公開資訊的反駁。

別誤會了,如果可以,我也想投資一個SaaS的商用軟體新創,看著他們用很少的資金做出MVP(Minimum Viable Product),然後用社群草根的方式取得眾多使用者,每週根據使用者的回饋以及蒐集到的數據改善並更新軟體,然後針對進階使用者每月收取費用,量測並改善耗損率,然後達成千萬使用戶、超過百分之百的年成長率以及九成以上的用戶留存率,取得最少五千萬美元的每年重複營收,然後以五億美元的價格出售給Salesforce這樣令人景仰的SaaS企業,並將創業家和Marc Benioff這樣令人景仰的創辦人簽約後握手的照片裱框,放在自己的桌子上朝外給所有進到自己辦公室的年輕創業家看。

等等,去他的投資!我乾脆自己創辦這樣的公司好了!

事實上,在動態均衡的商業世界裡,沒有任何一種商業模式或者產業具有永久的投資優勢。

興起於2004年的精實新創風潮為我們的世界帶來了臉書、推特、Youtube、Dropbox、Uber和Airbnb等日常生活的應用軟體,也連帶讓MVP、iteration和pivot變成熱門單字,更催生了一整個世代非工程背景也未曾創過業的新型風險資本家,他們在各大小新創活動中轉來轉去,以看似老練的口吻問著創業家,「你的每月活躍用戶量是多少?」

但在這樣低的創業和投資進入障礙的世界裡,伴隨而來的必然是激烈的全面競爭,不管是創業家彼此,或者風險資本家之間。這些競爭也許會反映在燒錢進行同業競爭上,也許反映在平均估值的不斷推升上。最終來說,產業抵達了動態均衡,人們也終於開始發現軟體精實新創並沒有比較容易創業,投資起來也沒有比較好賺。

似乎是歷史重演地,我們看到人工智慧的投資趨勢最近也反映出這樣的潮流反轉。

和精實新創經歷的一樣,我們不難想像過去兩年間滿手是錢的風險資本家們,乘著「人工智慧」、「機器學習」和「深度學習」的關鍵字浪潮,追逐著各種宣稱使用人工智慧、機器學習或深度學習來取代人類世界中某些由勞工負責的工作的新創。

而就跟精實新創投資一樣的,事實上任何有一點社會經驗的人都可以想像出任何一種「用AI取代人類」的新創應用。唯一不一樣的地方在於,要開發這樣的應用需要的不只是能夠寫邏輯程式代碼的coder,還需要懂得機器學習演算法的數學專家。

如果無法取得訓練模型用的資料,也是白搭

不夠格的投資者們,就像他們在精實新創浪潮中追著浪尾投資已經有數十家先行者的新創類型一樣,忙不迭地把錢灌進「能夠描繪某種AI使用情境」的軟體新創。稍微謹慎一點的投資者們,找來了從事相關研究的教授或者博士班學生來幫忙作盡職調查,以求避開明顯的騙子。

但不管是哪一種,打著「用AI取代人類」嘴砲的軟體新創仍然面臨兩個自己無法解決的挑戰。

其中一個就是我常常講的,就算是絕頂聰明的數學家或者資料科學家,如果無法取得訓練模型用的資料,那也是白搭,這也是為什麼在Hardware Club我們選擇投資提供從感測器到雲端機器學習完整系統的Full-stack AI新創。

另ㄧ個純軟體AI新創面臨的挑戰,則是在創業或者投資初期常常被忽略的硬體計算能力的限制。

常被忽略的硬體計算能力的限制

我在〈軟體吃掉世界,AI吃掉軟體〉一文中就曾經提到過,精實新創誕生的背景是晶片運算能力遠大於終端應用軟體所需,但機器學習的出現瞬間把這個落差給「闔上」了,突然間我們從毫不在乎硬體,又變得必須對硬體規格斤斤計較。

上面這個影片是史丹佛大學CS231n課程〈卷積神經網路在影像辨識上的應用〉第十五堂課的講座影片,主講者是最近剛取得電機暨計算機科學博士學位、明年即將在麻省理工開始任教的Song Han,講座的題目就是他的博士論文〈深度學習的高效率演算法和硬體〉

我強烈建議對於機器學習有興趣的人,不管是創業家或投資者——把這個講座影片看完,因為看完之後他們就能理解為什麼我說AI真正的主戰場在硬體

舉例來說,這整個講座使用的術語大約有三四成是機器學習和深度學習相關的,剩下的術語卻都是所有半導體產業的「老人」們再熟悉不過的:CPU、GPU、FLOPS、DDR 3、DDR 4、記憶體頻寬等。

事實上如果直接去閱讀Song Han的博士論文,老半導體人會看到兩個很親切的名字:論文的主要指導教授Bill Dally以及協同指導教授Mark Horowitz。其中Dally教授所著作的教科書〈Digital Systems Engineering〉幾乎所有電機本科生人手一本,而Horowitz教授則是我當年在半導體的研究領域「高速數位串流介面」的權威,如果把我當年閱讀過的他的論文疊在一起,就算沒辦法到頂天花板,最少也夠站在上面換燈泡。

Song Han在這兩位半導體老將的指導下完成這個博士論文,而且還受邀在CS231n〈卷積神經網路在影像辨識上的應用〉課程給講座的原因非常簡單:我們現在的CPU或者GPU、甚至於谷歌的TPU,都遠遠無法應付現有機器學習演算法「可能」的運算需求,因此軟硬體協同開發是必要的。

當我們說CPU、GPU乃至於TPU無法應付機器學習「可能」的運算需求,有兩個事情是我們所在乎的:運算速度以及耗能

一般的創業家和投資者比較能夠理解運算速度的重要性,畢竟整個深度學習的大躍進就是在於過去得花上幾週甚至幾個月才能完成的神經網路運算,被降到幾天甚至幾小時,但較少創業家或投資者能夠理解耗能的重要性,因為在過去十餘年的精實新創浪潮中,耗能這種東西百分之百是高通、鴻海、蘋果和三星這些人的問題。

機器學習中「耗能」是個大挑戰

但是在機器學習中「耗能」是一個很大的挑戰,甚至會成為效能的障礙。

機器學習的耗能主要來自兩個領域。

(一)矩陣乘法:所建置的神經網路越多層,每一層的神經元數越多,所需要運算的矩陣乘法就愈多。而半導體邏輯晶片的乘法是由NAND閘組合出來的,每一個電晶體的節點都會在電壓上下擺動的過程中消耗掉能量。考慮到矩陣乘法所需要用到的邏輯閘數量驚人,而且隨著神經元和係數的增加以指數成長,這部分運算的耗能也就指數成長。

(二)記憶體存取:類神經網路的運算需要大量而且高速的記憶體存取,主處理器(不論是CPU或者GPU)和記憶體模組通常是不同的晶片,因此存取發生在印刷電路板上,大量的能量會被耗損在對抗印刷電路板和晶片封裝的雜散容和電阻上。

耗能劇烈的第一個影響是電力成本。以去年擊敗李世乭的AlphaGo為例,該系統使用了1920個CPU和280個GPU,光下一場棋局的電費就高達三千美元,相較之下李世乭本人下這場局可能只需要一兩碗飯的熱量,「電」腦和「人」腦在耗能效率上仍然有天壤之別。

但是如果做多少運算就付多少電費就能解決的話,那還好說。但耗能的最大問題是:不管是哪一種耗能方式,都會轉換成廢熱,這些廢熱必須排出去,才能讓系統正常運轉。但系統耗能產生廢熱的速度根據運算量成指數成長,排除廢熱的速度卻受限於熱力學和流體力學有著線性的特質,因此我們不難想像在邁向泛用型人工智慧的路上,我們可能會先被「熵」這個躲也躲不掉的敵人給擋住,而不是演算法。

AI真正的主戰場在硬體-圖表.jpg
機器學習演算法與硬體的最佳化方式

在Song Han的講座中,他介紹了各種軟體演算法和硬體晶片結構的協同最佳化,以應付機器學習中training和inference兩個部分的耗能效率挑戰。但是不管是哪一種方式,不管改善多少運算效能和耗能效率,從工程的角度來看都是短期的、貼貼補補之類的解決方案,在摩爾定律多年前早已停止改善耗能的事實下,這些方案並沒辦法提供一個康莊大道通往真正的人工智慧經濟學終局

這也是作為風險資本投資者,我們致力於尋找著半導體邏輯運算以外的解決方案的原因。在之前專欄〈量子電腦春暖花開〉中我所介紹過的量子電腦是一種,而且理論上是最能夠應付無限延伸的未來中機器學習運算需求的一種。

但量子電腦的問題在於,目前不管是新創或者谷歌、IBM乃至於Intel等大廠的系統,都必須把溫度降到絕對零度附近,才能進行量子運算,地球上的降溫系統本身就是一個極為耗能的裝置,要等到綜合能源效率和建置成本到達可以和半導體晶片相比擬,恐怕還要不少的時光。

那麼有沒有其他的方式能夠比半導體有著高許多的耗能效率,但又沒有量子電腦那接近絕對零度的挑戰呢?答案也許存在自然界裡,就像是量子電腦採用物理特性進行運算,自然界也有許多物理現象包含了矩陣乘法的特質,也許我們可以找到一種運算方式,是將資料轉換成自然界的物理現象,在那裡完成運算,然後再匯回電腦系統中。這種運算統稱為「類比運算」(analog computing),其實是一門很古老的學問,遠在數位晶片高速成長的年代之前,幾乎所有的運算都是在類比世界中發生的。

作為投資者,我尋找著也等待著能夠善用類比運算來大幅加速機器學習的創業家,如果能夠投資到這樣的新創,我不介意錯過Blue Apron這樣的投資機會一百次!

本文由楊建銘授權轉載自其風傳媒專欄。

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

往下滑看下一篇文章
中華電信前進Meet大南方:以數位生態協創 引領AI時代競爭力
中華電信前進Meet大南方:以數位生態協創 引領AI時代競爭力

在新興科技快速發展的時代,企業的智慧轉型與產業的持續進化,仰賴跨域協創夥伴的協同合作。作為數位生態協創者的中華電信,近年來積極推動產業合作,並在2025 Meet Greater South亞灣新創大南方主題論壇「南方創新力:亞灣AI半導體經濟論壇」上,展示海地星空網路全面涵蓋、AI資料中心、AI運算與雲端資料庫等,彰顯其在AI時代的核心價值。此外,中華電信也分享了多項AI應用落地實績,示範如何透過Agentic AI的判斷與決策,以及各式客製化的創新流程,為產業注入新動能。

中華電信企業客戶分公司副總經理梁冠雄表示,公司自1996年民營化以來,持續深耕電信本業並大力拓展數位整合服務,如今已躍居台灣市值前十大公司。近年來更瞄準AI趨勢,積極與生態夥伴、垂直應用方案業者跨域合作,一路由電信服務提供者(CSP)、數位服務提供者(DSP)、數位服務賦能者(DSE)走向數位生態協創者(DEC)。透過不斷的業務轉型,中華電信展現了身為電信業者在數位時代的新價值,同時協助企業提升數位韌性與創新競爭力。

為此,中華電信將持續整合以AI為首的七項新興科技,包括智慧物聯網(AIoT)、大數據(BigData)、雲端(Cloud)、資訊安全(Data Security)、邊緣運算(Edge Compute)、5G(fifth Gen)及生成式AI(GenAI),為企業提供從AI基礎建設到創新應用的一站式服務,希望加速賦能百工百業發展AI應用、共同創造更大價值。

中華電信3
圖/ 數位時代

AI關鍵價值1》:海地星空與全光網路,為AI落地應用加速

梁冠雄指出,中華電信透過網路全面涵蓋、AI資料中心(AIDC)與雲平台的AI基礎建設,為企業帶來三大關鍵價值。

首先,中華電信透過「海地星空」網路,打造具高度韌性的連網環境,解決企業通訊中斷的痛點。除了全台第一的固網與行動網路外,中華電信更持續強化海纜建設,近年來投入大量資源發展衛星通訊,已具備低軌、中軌與高軌衛星的完整能量。藉此,無論國內外,中華電信都能透過海纜與衛星等高度韌性網路,為企業提供通訊雙重保障,確保暢通無虞。

同時,為因應AI大量資料傳輸的需求,中華電信亦積極佈局全光網路(All-Photonics Network,APN),2024年與日本NTT合作,以100 Gbps光傳輸頻寬進行跨國資料傳輸測試,資料往返時間僅需約為33.84毫秒,效率遠超過傳統單向傳輸需花費200~500毫秒。梁冠雄表示:「此次測試結果證明,全光網路有機會實現分散式AIDC的創新運作模式。」藉由全光網路超高速、低延遲和低功耗的傳輸特性,讓資料和運算資源可分散兩地,突破地點限制,賦予企業AI策略更高度的彈性。

中華電信4
圖/ 中華電信

AI關鍵價值2》:AI 資料中心升級,打造彈性高效的算力服務

在AI資料中心方面,中華電信已將既有的IDC升級為AIDC,並正式推出「hicloud AI算力雲」GPU雲端租賃服務,為有需求的企業提供AI算力雲租借服務。

梁冠雄強調,企業只需依照實際使用時間來支付費用,不必投入高額成本去購置硬體,即可滿足在AI高效能運算上的即時需求,大幅提升取得AI運算資源的靈活度與彈性,同時降低研發成本,快速搶佔技術先機。此外,考量到AIDC在耗能與散熱上的挑戰,中華電信亦規劃導入直接液冷與沉浸式等散熱技術,為大規模GPU部署提前做好準備。

AI關鍵價值3》:串聯台灣前四大公雲,提供AI特色服務與可靠雲端環境

中華電信完整布局公雲服務,除自有雲端品牌hicloud,亦是AWS、Azure及GCP三大國際公雲的重要合作夥伴,更自主研發各項雲平台特色服務,例如:雲網安整合的資安防護、CMX專屬電路直連雲端、CMP多雲管理平台及加密分持等,為企業打造更安全、穩定且高效的雲端運行環境。

舉例來說,企業可以透過CMP同時管理兩個以上的雲端環境,或透過加密分持服務,避免資料過度依賴單一雲端而導致的營運風險。梁冠雄說明,加密分持機制將企業的資料備份分切成三份,並分別儲存在不同公有雲上,日後若遇到資料毀損或系統停擺等情況,只要將三份資料集結起來就能恢得運作,達到高可用與高安全的效果。

此外,搭配自主研發的AI Factory平台,讓企業可以低代碼方式,開發AI模型與應用,並執行應用所需算力與雲資源。

中華電信1
圖/ 數位時代

Agentic AI應用》以數位韌性驅動智慧城市、交通與醫療創新

在AI基礎建設外,梁冠雄亦分享中華電信在智慧城市、智慧交通與智慧醫療的Agentic AI應用實例。

以智慧城市應用為例,中華電信打造的AI淹水預警及輔助決策系統,能根據影像監控自動判斷災害等級,並據此自動進行應對措施決策,例如抽水設備調度、避難指引、淹水示警等。在智慧交通管理上,中華電信結合VLM技術打造的交通壅塞預警及輔助決策系統,不僅能判斷道路壅塞或車站人潮擁擠的程度,還能偵測交通事故,並依事件的嚴重程度及提供決策建議。在智慧醫療領域,中華電信同樣投入大量心力,以AI完善病患從看診前、看診中到看診後的所有流程,不僅提升了醫療效率,也讓醫護人員能更專注於病患照護,真正展現智慧醫療的價值。

梁冠雄強調,未來中華電信將以數位韌性為核心,持續深化AI基礎建設與創新應用的雙軌布局,並期待與更多新創攜手合作,將創意與技術落地,共同打造多元共榮的產業生態系。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓