保險科技:讓保險公司利用數據重新建立競爭優勢
保險科技:讓保險公司利用數據重新建立競爭優勢

哪個產業的決策是數據導向的?保險業絕對是其中之一;大多數保險公司擁有大量數據,但試圖將數據應用於營運時,卻面臨巨大的挑戰。保險業需要採取一些行動,才能解決這種困境。

推薦閱讀:保險科技浪潮來襲,從小孩「被退貨」看市場新商機

考量歷史數據的數量和價值,第一優先的任務,是將已儲存在資料庫中數十年與精算、保單、理賠和詐保相關的數據釋放出來,為未來進行承保、定價、作業處理、產品開發、偽冒防制等業務時,提供有利的参考資訊。在理想狀況下,這些歷史數據幾乎可以無限地利用時間和資源進行數據挖掘、搬移、儲存、資料挖掘、資料倉儲和分析,這種運用資料的方式將會很有效。

然而,任何保險公司都沒有無限的資源和時間,可投入在舊數據中尋找有價值的資訊,特別是眼前還有許多其他緊急的問題或商機要處理;此外,當市場上新保單銷售數字的持續下降,以及所有事物都朝向「亞馬遜化(Amazonification)」(即滿足客戶對即時、簡易的線上購物體驗的期望)加速發展時,企業對客戶的深入了解,以及有效運用數據來優化獲取客戶(customer acquisition)、提供個人化體驗、簡化購買流程的時代與壓力已經到來,而且無處不在。

面對如此艱困的環境,解決之道是什麼?這裡提供3種因應策略:

策略1:不要眷戀歷史資料,重新蒐集數位數據

根據摩根史坦利(Morgan Stanley)和波士頓企管顧問(BCG)共同發表的報告〈Reinventing Life Insurance Agency Distribution Globally〉指出:缺乏效率是保險業面臨的主要挑戰,特別是「老派作風的銷售流程」,既繁瑣且與要求數位體驗的客戶期望不符。 歷史或過時的數據不會隨處可見,但競爭優勢可以無處不在。基於這個論述,建議保險公司採取「數據轉傳(dataforward)」的思維,向前看而不往回看。

最好、簡單的方法是:重新開始。 透過乾淨的數據集和現代技術重新發展以數據驅動的策略,保險公司不僅可擺脫傳統數據的泥沼,且可充分利用人工智慧和機器學習等先進技術,以建立競爭優勢。此外,現代消費者多已透過線上與保險公司進行互動,因此可經由良好設計的數據蒐集方式,來深入了解客戶在搜尋什麼商品?真正的需求是什麼?這類的作法對吸引和轉換潛在客戶、設計和交付更好的產品與服務至關重要。

策略2:蒐集高質量數據,建構查詢和運用數據的能力

保險公司要能在2020年代取得成功的關鍵:「擁有高質量的數據(quality data)」以及「擁有查詢(query)和運用(use)數據的能力」。

而最快且有效的方法是提供數位化的服務體驗,同時使用現代技術從頭開始建構建全新、乾淨的數據集。但有兩個問題須先釐清:

  1. 什麼樣的數位服務體驗,可以產生最有價值的數據?
  2. 保險公司應該自行建構或向外採購所需的技術。

無論保險公司是何種商業模式,舉凡那些訪客瀏覽過公司的網站、訪客來自何處、以及訪客在搜尋或瀏覽什麼等行為相關的數據都是無價的。透過這些互動所產生的洞見(insights)將可為許多決策提供参考依據,最終都有機會使潛在客戶和保險顧問以更容易地與公司進行業務往來。

保險公司可以根據業務需求,也可以由其他類型的數據獲得更多有價值的數據。例如,與理賠和保單相關的數據便可應用在精算和審核,以便找出共通性及改善產品、定價和預防詐欺。精準的保單定價將會直接影響利潤,因此,將內、外部數據與預測分析工具結合使用,可使保險公司能夠快速地回應市場需求,同時能夠偵測出潛在的詐欺行為。根據BCG的分析,相較於能更了解客戶需求而驅動客戶購買商品的競爭對手,無法適應新的定價模式與破壞式的定價技術的保險公司將會喪失競爭優勢。

未來,根據即時數據(fresh data)收費的按需型保單(on-demand policy)應有機會爭取到目前尚未購買保險或保險保障範圍不足的消費族群,既能增加新的營收來源,也能降低獲客成本。

策略 3:與保險科技業者合作以快速建立競爭優勢

進行全面的「自行建構」與「向外購買」的分析,可以協助保險公司進行多面向的比較,包含成本與效益、開發以數據為中心的解決方案、或與供應商合作之間的成本等;但是有些項目是難以量化的,例如錯失的機會成本和用戶體驗也應併入考量,特別是市場上充滿著許多與現有保險者競逐相同市場的數位原生型的市場破壞者,這些考量尤其重要。

但許多保險公司是否能做出決策,只取決於一個問題:公司是否擁有或可以僱用的資料科學家、資訊專家、客戶體驗專家等專業人員,能在公司內部執行數據分析的任務? 顯然,大部分的保險公司都缺乏這些人才。

目前較為可行的解決方案是與保險科技業者合作,要比公司獨立開發要快速、風險更低且更容易成功。此外,保險科技新創業者還可提供現代化的基礎架構、持續的創新、定期的軟硬體更新、取得先進的技術與人才等益處,這些資源可幫助保險公司持續聚焦於原本擅長的銷售保單和客戶服務等領域。

保險公司原來擁有的數據不會消失,且仍具有價值;短期來說,重新開始建構數位數據是正確的解決方案;舊有的平台可進行現代化改良,舊的數據可往後台搬移,當有新的數據產生時可一併投入使用。隨著時間演進,當保險公司擁有合併數據來源(包括第三方的數據源)以及根據多元數據集產生新洞見的能力時,未來將可創造更多的商機及優勢。

詳細內容,請參考:「Insurtech: An opportunity for insurers to start fresh with data」 / By Jean-Nicholas Hould / Digital Insurance / Feb 03, 2020

責任編輯:陳建鈞

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場

往下滑看下一篇文章
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?
從 Raise Day 出發,方睿科技如何打造商用地產的 AI 企業服務生態系?

AI 與數據正快速落地至各行各業,從製造、金融、電信、醫療到零售,應用速度不斷加快。但在每年交易規模至少新台幣 1900 億元的商用地產領域,卻長期受到數據破碎且不透明的限制,只能仰賴人力蒐集資訊,再憑直覺和經驗去解讀資訊、做出決策,使 AI 潛在價值難以真正發揮。為回應產業轉型的核心痛點,方睿科技首度舉辦「商用地產生態系年會 2026 Raise Day」,以開放式平台為核心,串聯專業地產服務商、空間相關企業服務商、產業專業人士等多元角色,勾勒出 B2B 企業服務生態系的全貌,希望能透過科技促進數據流動,為商用地產企業協作模式開啟新的可能性。

方睿科技
方睿科技首度舉辦 2026 Raise Day,以開放式平台為核心串聯多元角色,推動商用地產邁向產業共好的新階段。
圖/ 數位時代

方睿科技雙軌策略,讓 AI 成為商用地產的決策引擎

方睿科技創辦人暨執行長吳健宇指出,在 AI 時代,人應該專注於「最有價值」的工作;然而在商用地產業中,專業人士卻有約 70% 的時間耗費在資料蒐集與整理上,真正用於判斷與決策的時間僅約 10%。方睿科技希望翻轉這樣的時間分配,讓人力從低價值的資料處理中解放,將更多心力投入在判斷、溝通與決策等創造價值的商業活動。

方睿科技
方睿科技創辦人暨執行長 吳健宇
圖/ 數位時代

為此,方睿科技提出兩條實踐路徑。第一條是建構出具備完整性、易用性與進化性的商用地產智慧平台,運用 AI 技術,將過去產業中破碎、非結構化的資料,重塑為可被運算、可驗證的標準化數據,並結合圖表與互動式介面,讓使用者能夠快速得到完整市場資訊,實現「用戶即專家」的目標。

第二條則是推動生態系聯盟,將不動產視為企業服務的核心載體,串聯設計、家具、搬遷、清潔等多元服務夥伴,使空間不再只是靜態標的,而是承載案例、服務與數據回饋的生態系節點。透過生態系夥伴累積的實務資料與服務紀錄,平台得以發展「資料即推薦」模式,推動商用地產從單點交易,邁向可擴張的 B2B 服務網絡。

獨創「資料飛輪」機制,實現用戶即專家目標

在 AI 模型日益普及的當下,真正的競爭關鍵已不在模型本身,而是能否有效率地收集資料、提高資料品質,並將其與實際決策流程緊密結合。為此,方睿科技獨家設計出一個由「資料收集、資料精煉、專家把關、決策反饋」組成的資料飛輪,回應商用地產長期面臨的資料破碎與決策效率低落問題,成為方睿科技實踐願景的第一條路徑。

方睿科技技術長郭彥良進一步說明,資料飛輪機制的運作架構。首先在資料收集階段,必須系統性蒐集公開資料、內部檔案與報告,並透過 AI 協作將圖片等非結構化資訊轉換為可用的結構化數據。接著進入資料精煉,透過資料清洗與實體對齊,將原始資訊從單純的可閱讀升級為可比較、可推論的決策依據。第三步專家把關,則引入不動產專家進行校正與產業判讀,補上模型難以理解的規則與慣例,確保關鍵數據的正確性。最後的決策反饋階段,藉由收集使用者提問與行為,檢視現有資料是否足夠精準,再回到專家校正與補齊流程,使整個系統能隨使用頻率提升而持續進化。

在資料飛輪的運作基礎上,方睿科技正積極研發商用地產智慧平台 PickPeak。郭彥良表示,PickPeak 並非單純的物件搜尋工具,而是結合深度資料與 AI 的決策輔助平台。使用者可透過自然語言互動,提出人數、預算、區位、產業屬性等多重條件,再由系統動態生成可比較、可驗證的選址方案,真正將 AI 從「回答問題的工具」,轉化為「陪伴決策的數位專家」。

方睿科技
方睿科技技術長 郭彥良
圖/ 數位時代

創新 Data to win 模式,讓 AI 深入商用地產各階段決策流程

不過,單靠數據整合與 AI 應用仍不足以支撐產業全面升級,因此,方睿科技提出的第二條路就是,推動產業生態系聯盟,整合商用地產市場上不同角色的數據,讓 AI 能夠真正成為商用地產決策時的智慧引擎。

方睿科技不動產知識創新中心總監曾凡綱指出,目前在企業、房東或物業主與各類服務供應商之間,缺乏有效的整合機制,導致企業在選址與空間規劃過程中,難以快速找到真正合適的服務與解決方案,形成明顯的產業斷點。

為解決這些斷點,方睿科技提出「Data to win」模式,以資料取代傳統「Pay to win(付費買廣告)」思維,讓真正具備經驗與實績的服務夥伴,在適當的決策節點被看見。

曾凡綱說明,在廣告投放效益越來越低的情況下,企業服務商面臨的問題已不只是「如何曝光」,而是「如何在對的地方被看見」,這將是未來的市場勝出指標;而 Data to win 正好可以協助企業服務商建立此能力,方睿科技將生態系夥伴所擁有的案例、服務紀錄與產業知識等資料,經過去識別化與結構化處理後,再嵌入企業決策流程中,讓推薦不再來自廣告投放,而是真實、可被驗證的使用經驗,透過這樣的機制,不僅提升企業決策的準確度,也能同步放大生態系夥伴在合作中的實質價值。

舉例來說,方睿科技整合辦公傢俱夥伴 Backbone 班朋實業長期累積的辦公室規劃案例與平面圖資料,讓企業在選址階段,就能同步評估空間規劃方案,加速決策流程。又如,整合出行服務夥伴 USPACE 悠勢科技的服務資料,並呈現在地圖上,協助企業評估辦公據點的交通便利性,優化員工日常通勤與出行體驗。此外,平台也可整合大樓的 ESG 認證、公共設施與服務層資訊,協助企業快速篩選符合需求的辦公大樓,提升進駐媒合效率。

方睿科技
方睿科技不動產知識創新中心總監 曾凡綱
圖/ 數位時代

「Raise Day 只是這場變革的起點。」吳健宇強調,方睿科技已經透過投資與合夥模式,將布局延伸至專業地產服務與空間經營領域,至今旗下已有商用不動產仲介、顧問與估價等專業服務的宇豐睿星,以及聚焦商用地產代銷市場的希睿創新置業。透過直接參與第一線實務運作,方睿得以更深入理解產業真實痛點,讓科技不只是工具,而能真正回應實際決策與服務需求。

此外,方睿科技未來也將持續擴大「商用地產 x 企業服務生態系」聯盟,目前包括 Backbone、USPACE、IKEA For Business、潔客幫等企業服務夥伴已率先加入;接下來,方睿科技將邀請更多擁有關鍵數據與專業能力的企業服務商加入,讓數據在安全、可控的前提下流動,進一步釋放商用地產在選址、營運與企業服務等全生命週期中的結構性價值,為產業轉型啟動下一個關鍵階段。

方睿科技
右起方睿科技共同創辦人暨營運長陳致瑋、USPACE悠勢科技共同創辦人暨執行長宋捷仁 、Backbone班朋實業創辦人暨執行長廖家葳,透過企業服務生態系合作共同為產業啟動下一個關鍵階段。
圖/ 數位時代

方睿科技官網: https://www.funraise.com.tw

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓