企業搶AI落地先機,卻碰上標註師的選擇困難症!怎麼找才有效?
企業搶AI落地先機,卻碰上標註師的選擇困難症!怎麼找才有效?

找工程師標?大材小用

AI專案起跑之初,有些公司一下子找不到人,會讓工程師先幫忙標註,但不到一個月,工程師大概就會想離職,光跑模型都來不及了,怎麼有空標?

工程師
圖/ pexels

而且工程師一身武藝,也不會只想做標註而已。再不久,老闆也會跳腳,因為工程師很貴,用來做標註非常浪費。

眾包平台或自行開發?必須三思後行

國外有些公司會利用Amazon Mturk等眾包平台,這類平台的標註師來自不同國家,多為家庭主婦、學生兼職,標註師彼此認知判斷不同且缺乏品管,品質較容易有落差。

此外,如何確保數據資安會是一大隱憂。若水有客戶曾經用過這類的平台,最後因為熟悉平台介面耗了不少時間,而且還需要自行開發用來描點的標註工具套件而作罷,在台灣的大企業基本上不太會考慮這個選項。

也許你會想開發自己的標註平台,但從投資報酬的觀點來看,不一定划算。除非標註的類型、數量從頭到尾都不會改變,否則從零到一建置平台,持續開發標註工具,以及後續的平台維護及優化,一樣需要投入人力和時間。

找工讀生標?勞心勞力

請少數幾位工讀生自行標註,在專案開發初期確實是個好方法。有個新創圈客戶,一開始也是用in house工讀生標註了一陣子,但在與若水合作半年後,就不再請工讀生標註。為什麼?

找AI數據標註工讀生
圖/ Akson on Unsplash

這位新創公司的副總對我大吐苦水 :原來,標註的工作畢竟重覆性高,工讀生常常做了一陣子就嚷嚷著要請假或是不做,公司在核心業務之外,為了管標註工讀生又要加請一個主管,同時PM或工程師還要自己花很多時間檢查工讀生做的標註,另外還有辦公室空間的問題,整個算下來人事費用偏高,根本不划算;有時碰上AI新產品開發階段,或是突然專案變多,臨時根本找不到好手支援。

或許對你而言,多花點錢請工讀生標註,為了自己掌控進度一切還能忍受。但在若水的經驗觀察中,

這樣長期下來可能會讓你錯過AI專案開發中最寶貴的資源:時間

選對AI數據外包服務商,優勢在哪 ?

在監督式機器學習的領域,大量且優質的數據是AI應用成功的關鍵之一。當餵進模型的資料數據標註的不夠精確,機器學習模型(Machine Learning Model)的學習效果就會受到影響,也就是人們常說的「Garbage in,Garbage out」,換言之,在此之前的投資都浪費掉了。

在若水有一套品質檢測回饋制度,來確保客戶交付的數據如期如質完成,進而帶動機器學習模型的品質和成效。

AI
圖/ 若水AI Blog

每位標註師都接受過各種標註圖形的訓練、認證,參與專案前再針對該專案的標註特徵考試,以確保標註時有精確的認知和下標動作,還有QA、QC人員分批進行品質抽測。

對許多客戶來說,他們最重視若水在標註時給的原則回饋, 機器學習模型需要數據訓練,但需要餵什麼樣「特徵」的數據,往往不太好定義。

之前,有位日本客戶本想讓公司內部的工程師和工讀生去標註橋上的鐵鏽,一試才發現太過耗時、且無法全面檢測標註品質,轉而找上若水幫忙。

因為有協助過建築業的經驗,同仁們馬上想到要請教建築專家,才掌握到鐵鏽的物理特色,不會把橋上的光影、污漬或顏色較深的青苔,標註成鐵鏽,讓機器誤學。

AI
圖/ 若水AI Blog

加上鐵鏽形狀太不規則,業界往往都是用「Polygon多邊形描邊標註」的方式來處理,若水AI數據處理顧問審慎評估後,決定以「Pixel-wise逐像素標註」進行數據標註,因為可以讓機器學習所需的Training Data品質更優質、精準,進而達到AI應用快速推展。

究竟數據標註該怎麼解?端看企業開發AI的速度和數量。有一個數據可以參考:我們內部算過,比起找工讀生要花的招募、薪酬(含勞健保)、主管薪資、場地、設備建置等條件來估算,找到一個經驗豐富、品質管理系統穩定的外包標註團隊,至少可以節省20%的成本。

最後,如果你正在思考外包數據標註服務,不妨參考以下4個原則:

  1. 是否能協助精準定義標註原則?
  2. 是否有品質和品管的內控流程?
  3. 是否有及時與客戶回饋的機制?
  4. 是否有可靠、穩定的資安系統?

如何處理學習數據,優化機器學習模型並擷取正確的特徵,讓團隊可以快速的產出AI,其實不是單一的執行層面議題,而是一種全面性的策略。以標註數據為例,在思考上光是「有人標就好」還不夠,企業應該思考的是 :

如何在達成省時、省力、省成本下,同時藉由精準標註,推動AI落地。

責任編輯:林芳如

本文授權轉載自:若水AI Blog

關鍵字: #人工智慧
往下滑看下一篇文章
決策桌上的虛擬團員:臺大 EiMBA 如何將 AI 從「工具」升級為「共創夥伴」?
決策桌上的虛擬團員:臺大 EiMBA 如何將 AI 從「工具」升級為「共創夥伴」?
2025.12.09 | 創新創業

「過去我們教育教導學生如何從數據中找出標準答案,但在生成式AI的時代,標準答案往往是最廉價的。」臺大EiMBA執行長李家岩一語道破了這波商業典範轉移的核心。他認為,當資訊獲取邊際成本趨近於零,企業的競爭優勢已不再是單純的「掌握資訊」,而是「如何設計讓 AI 與人共同創造價值的流程」。這不只是一句口號,而是一場正在被驅動的轉型。從課程設計的邏輯重組,到學生創業專題的實戰演練,臺大EiMBA正將校園打造成一個允許失敗、快速驗證的「人機共創實驗場」。

告別標準答案,當教授變成「學習架構師」

「我們不再只是教導知識,而是設計學習。」李家岩指出,臺大EiMBA的課程正在經歷結構性的轉變。現在的教授角色更像是一位「學習架構師(Learning Architect)」,他們的任務不是單向輸出,而是設計出高強度的挑戰與情境,讓學生在解決問題的過程中,自然地將 AI 納入決策迴路 。

以今年新開設的「雙軸轉型與人工智慧」課程為例,這並非傳統的技術概論課,而是場關於商業邏輯的壓力測試。學生不再只是繳交一份靜態的商業計畫書,反而被要求運用生成式 AI 輔助設計商業模式畫布(Business Model Canvas),甚至利用Vibe Coding技術讓不懂程式語言的商管學生,也能透過自然語言與提示工程,快速生成互動式的原型與操作介面來模擬市場反應 。這項技術打破了傳統「文組企劃、理組執行」的藩籬,讓創意能即時轉化為可執行的程式碼。在這個過程中,AI 扮演的角色並非代筆的秘書,而是將概念具現化的加速器,以及最嚴厲的邏輯質疑者。

bn圖說女生.jpg
寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕
圖/ 數位時代

「這是我在課程中學到最深刻的一課,」臺大EiMBA二年級生、寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕分享道。身處近200人新創組織的高階主管,她坦言最初員工對 AI 充滿敬畏,甚至恐懼被取代。但在 EiMBA 的課堂上,她發現 AI 真正的價值在於「攻防」與「鏡像」。「老師設計了一種『沙漏式』的提問邏輯,迫使我們把策略餵給AI後,必須面對它無情的反問。」鐘紫瀕回憶,「這個市場假設有數據支持嗎?」、「你的競爭壁壘在哪裡?」這種高強度的追問,都是AI在對學員提出的挑戰,迫使她必須思考得比AI更深、更遠。「以前我們忙著找答案,現在我們學會如何設計出『連 AI 都沒想過的好問題』。AI就像一面鏡子,映照出我們思考邏輯上的盲點。」

數位孿生實戰,將「感覺」轉化為「數據決策」

除了策略層面的思維激盪,AI 在營運端的落地應用,更是讓許多直覺型創業者經歷了一場痛苦卻必要的轉型。臺大EiMBA一年級生、赤赤子設計師林宏諭對此感觸良多。

身處傳統服裝產業,過去他的經營模式多仰賴美感與經驗,「以前做決策就是憑感覺,甚至忙不過來時,連縫扣子這種小事我都自己跳下去做。」但在李家岩講授的「雙軸轉型與人工智慧」課堂上,他被迫面對冰冷的數據與流程,而這正是李家岩強調的「數位孿生(Digital Twin)」素養 。

台大EiMBA圖說一
赤赤子設計師林宏諭
圖/ 數位時代

在虛擬世界中建立一個與真實工廠或商業流程一模一樣的模型,利用AI進行模擬與預測,是現代智慧製造的核心。對林宏諭而言這意味著必須將腦中抽象的「職人經驗」轉化為AI讀得懂的 SOP。「那段過程就像是被老師架著刀子往前走,非常痛苦,」林宏諭形容,為了讓 AI 能協助優化流程,他必須把每一個步驟定義清楚,無法再用「大概」、「憑感覺」含糊帶過 。

雖然煎熬但成果是豐碩的。當感性的創意被裝進理性的數據框架後,林宏諭發現自己的決策不再是賭博,而是可被驗證的科學。「現在AI不僅幫我理清思緒,更像是團隊的外掛大腦。我開始能鼓勵員工使用AI釋放重複性勞動,讓大家能準時下班,去做更有價值的事。」這正是課程希望帶給學員的轉變,從「事必躬親的管理者」進化為「善用工具的跨域系統設計者」。

bn圖說二.jpg
臺大EiMBA執行長李家岩
圖/ 數位時代

跨域共創,打破同溫層的「破壁效應」

如果說AI是另一位虛擬組團員那麼課堂上原本的同學們,就是來自多重宇宙的戰友。這裡匯聚了醫師、網紅、工程師、律師與傳產二代,如此多元的背景在AI的催化下,產生奇妙的化學反應。

李家岩特別提到了榮獲霍特獎(Hult Prize)肯定的「RiiVERSE」團隊。這個由臺大管院 EiMBA 與 GMBA 學生組成的團隊,成員涵蓋了時尚、行銷與創新創業等不同領域。他們利用舊衣回收再製技術,打造出循環經濟的生態圈。「這就是我們強調的跨域共創。」李家岩解釋,在過去,不同領域的專業人士溝通成本極高,但現在,AI成為了通用的翻譯機與黏著劑。

「AI不僅降低了技術門檻,讓文組生也能做Prototype,更讓理組生也能懂得商業敘事。」在這樣的環境下,創新不再是單打獨鬥,而是像RiiVERSE團隊一樣,結合理性與感性,共同回應全球永續(ESG)的艱鉅挑戰。

為了內心的狂熱,動手去做

然而,隨著AI涉入決策越來越深,一個核心問題浮現:在演算法能預測趨勢、生成文案甚至編寫程式的時代,人類領導者的價值還剩下什麼?「我們教的不是被AI取代,而是擴增智慧。」李家岩眼神堅定地說。他強調,未來的領導者必須具備三項關鍵特質:AI素養、跨域系統設計能力,以及科技人文的反思力 。

其中最關鍵的,是懂得界定「自主邊界(Autonomous Boundary)」。領導者必須清楚判斷:哪些決策該放手讓 AI 自動化?哪些時刻必須保留人類的溫度與價值判斷?「例如在智慧工廠中,AI 可以預測機台何時需要維修保養,但『什麼樣的風險可以接受』、『我們要解決什麼社會問題』,這些涉及價值觀的決策,永遠需要人類來定奪。」李家岩補充道 。

bn圖說三.jpg
寵物百分百用戶體驗暨品牌行銷中心負責人鐘紫瀕(左)/臺大EiMBA執行長李家岩(右)
圖/ 數位時代

在李家岩眼中,真正的創新往往不是來自同類型人才的討論,而是從不同背景、不同世界觀的碰撞中誕生。「一個人能看到的只是片段,跨域合作才能讓問題完整。」他再次提到。對他而言,EiMBA 想培養的不是知道最多的人,而是能讓「各種智慧」一起工作的人。在AI與人類智慧並存的年代,領導者最重要的能力,不是掌握所有答案,而是打造一個能讓答案自然生成的組織環境。「未來需要的領導者是能整合技術與人、懂得跨域系統思考、也能『擇人(含機器人)而任勢』的人。」李家岩說,而這群充滿創業創新的管理者也將在未來商業戰場上奏出人機協作的新樂章。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓