企業搶AI落地先機,卻碰上標註師的選擇困難症!怎麼找才有效?
企業搶AI落地先機,卻碰上標註師的選擇困難症!怎麼找才有效?

找工程師標?大材小用

AI專案起跑之初,有些公司一下子找不到人,會讓工程師先幫忙標註,但不到一個月,工程師大概就會想離職,光跑模型都來不及了,怎麼有空標?

工程師
圖/ pexels

而且工程師一身武藝,也不會只想做標註而已。再不久,老闆也會跳腳,因為工程師很貴,用來做標註非常浪費。

眾包平台或自行開發?必須三思後行

國外有些公司會利用Amazon Mturk等眾包平台,這類平台的標註師來自不同國家,多為家庭主婦、學生兼職,標註師彼此認知判斷不同且缺乏品管,品質較容易有落差。

此外,如何確保數據資安會是一大隱憂。若水有客戶曾經用過這類的平台,最後因為熟悉平台介面耗了不少時間,而且還需要自行開發用來描點的標註工具套件而作罷,在台灣的大企業基本上不太會考慮這個選項。

也許你會想開發自己的標註平台,但從投資報酬的觀點來看,不一定划算。除非標註的類型、數量從頭到尾都不會改變,否則從零到一建置平台,持續開發標註工具,以及後續的平台維護及優化,一樣需要投入人力和時間。

找工讀生標?勞心勞力

請少數幾位工讀生自行標註,在專案開發初期確實是個好方法。有個新創圈客戶,一開始也是用in house工讀生標註了一陣子,但在與若水合作半年後,就不再請工讀生標註。為什麼?

找AI數據標註工讀生
圖/ Akson on Unsplash

這位新創公司的副總對我大吐苦水 :原來,標註的工作畢竟重覆性高,工讀生常常做了一陣子就嚷嚷著要請假或是不做,公司在核心業務之外,為了管標註工讀生又要加請一個主管,同時PM或工程師還要自己花很多時間檢查工讀生做的標註,另外還有辦公室空間的問題,整個算下來人事費用偏高,根本不划算;有時碰上AI新產品開發階段,或是突然專案變多,臨時根本找不到好手支援。

或許對你而言,多花點錢請工讀生標註,為了自己掌控進度一切還能忍受。但在若水的經驗觀察中,

這樣長期下來可能會讓你錯過AI專案開發中最寶貴的資源:時間

選對AI數據外包服務商,優勢在哪 ?

在監督式機器學習的領域,大量且優質的數據是AI應用成功的關鍵之一。當餵進模型的資料數據標註的不夠精確,機器學習模型(Machine Learning Model)的學習效果就會受到影響,也就是人們常說的「Garbage in,Garbage out」,換言之,在此之前的投資都浪費掉了。

在若水有一套品質檢測回饋制度,來確保客戶交付的數據如期如質完成,進而帶動機器學習模型的品質和成效。

AI
圖/ 若水AI Blog

每位標註師都接受過各種標註圖形的訓練、認證,參與專案前再針對該專案的標註特徵考試,以確保標註時有精確的認知和下標動作,還有QA、QC人員分批進行品質抽測。

對許多客戶來說,他們最重視若水在標註時給的原則回饋, 機器學習模型需要數據訓練,但需要餵什麼樣「特徵」的數據,往往不太好定義。

之前,有位日本客戶本想讓公司內部的工程師和工讀生去標註橋上的鐵鏽,一試才發現太過耗時、且無法全面檢測標註品質,轉而找上若水幫忙。

因為有協助過建築業的經驗,同仁們馬上想到要請教建築專家,才掌握到鐵鏽的物理特色,不會把橋上的光影、污漬或顏色較深的青苔,標註成鐵鏽,讓機器誤學。

AI
圖/ 若水AI Blog

加上鐵鏽形狀太不規則,業界往往都是用「Polygon多邊形描邊標註」的方式來處理,若水AI數據處理顧問審慎評估後,決定以「Pixel-wise逐像素標註」進行數據標註,因為可以讓機器學習所需的Training Data品質更優質、精準,進而達到AI應用快速推展。

究竟數據標註該怎麼解?端看企業開發AI的速度和數量。有一個數據可以參考:我們內部算過,比起找工讀生要花的招募、薪酬(含勞健保)、主管薪資、場地、設備建置等條件來估算,找到一個經驗豐富、品質管理系統穩定的外包標註團隊,至少可以節省20%的成本。

最後,如果你正在思考外包數據標註服務,不妨參考以下4個原則:

  1. 是否能協助精準定義標註原則?
  2. 是否有品質和品管的內控流程?
  3. 是否有及時與客戶回饋的機制?
  4. 是否有可靠、穩定的資安系統?

如何處理學習數據,優化機器學習模型並擷取正確的特徵,讓團隊可以快速的產出AI,其實不是單一的執行層面議題,而是一種全面性的策略。以標註數據為例,在思考上光是「有人標就好」還不夠,企業應該思考的是 :

如何在達成省時、省力、省成本下,同時藉由精準標註,推動AI落地。

責任編輯:林芳如

本文授權轉載自:若水AI Blog

關鍵字: #人工智慧
往下滑看下一篇文章
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作

現代人手機不離手,通勤時滑短影音、午休追串流影劇、下午開視訊會議,網路影音應用成為工作與生活的普遍情境。然而,一旦畫面卡頓、畫質不穩,或聲畫不同步,使用體驗立刻打折,甚至影響工作效率與專業判斷。

也因此,網路品質不再只是「快不快」的問題,更關乎能否在高使用量的日常情境下,維持穩定、連續的表現;對此,第三方評測也採用更貼近使用者情境的方式衡量網路體感。而 Opensignal 最新報告指出,台灣大哥大在影音體驗相關項目是業界唯一同時拿下「影音體驗」與「5G 影音體驗」雙項獎項的電信商,其中,關鍵的差異是什麼?

為何「影音體驗」是網路品質的關鍵指標?

愈來愈多消費者入手旗艦機,追求的不只是硬體規格,還有流暢的 AI 應用與多工協作。然而,無論是視訊即時翻譯或雲端會議,這些高階功能都有一個共同前提:網路必須穩定。一旦網路品質不佳導致畫質下降或音畫不同步,旗艦級的 AI 功能將形同虛設。

這也意味著,檢驗網路價值的標準已經改變。如今,不能只看單點測速的瞬間峰值,更重要的是高負載情境下的耐力表現。因此,比起單點測速,影音體驗會是更完整的測試標準,直接挑戰了網路在室內深處、移動途中或人潮聚集時的網路實力;而唯有在長時間串流下依然不卡頓、不降畫質,才稱得上是高品質的連線。

換言之,隱身在硬體背後的電信商,才是發揮旗艦機性能的關鍵;唯有透過最佳網路品質,才能讓手中的旗艦機既是規格領先、也是體驗領先。

唯一影音體驗雙料冠軍,Opensignal 權威認證的有感體驗

雖然相較於測速數據,影音體驗更貼近日常使用,但也更難量化。對此,國際權威認證 Opensignal 的「影音體驗分數」,依循 ITU 國際標準,透過真實用戶裝置在行動網路上進行影音串流的實測數據,觀察不同電信網路在實際使用情境下的表現。

簡單來說,評測聚焦三項核心指標:影片載入時間、播放期間的卡頓率,以及畫質(解析度)是否能穩定維持。使用者從開始播放到持續觀看的整體品質,分數以 0–100 呈現,分數愈高,代表在三項指標的表現愈佳。相較於單點測速,這類評測更能呈現長時間、高使用量下的網路品質。

人流情境不降速.jpg
圖/ 數位時代

而在今年最新公布的 Opensignal 評測中,台灣大哥大獲得「影音體驗」獎項唯一雙料冠軍。其中,「整體影音體驗」為全台獨得第一名,「5G 影音體驗」則與遠傳並列第一。

之所以能在影音體驗拔得頭籌,關鍵在於台灣大哥大目前是全台唯一整合 3.5GHz 頻段 60MHz 與 40MHz、形成 100MHz 總頻寬的電信業者,亦是現階段全台最大 5G 黃金頻寬配置。頻寬愈寬,代表單位時間內可傳輸的資料量愈大;在大量使用者同時進行影音串流、視訊互動的狀態下,更能維持穩定傳輸、減少壅塞發生機率。

台灣大獲權威認證,NRCA技術撐起穩定基礎

除了頻寬帶來的流量優勢,台灣大哥大也採用「NRCA 高低頻整合技術」,也就是透過高低頻協作,讓 3.5GHz 負責高速傳輸、700MHz 補強覆蓋與室內連線,改善室內深處與移動情境的訊號落差,提升連線連續性。

同時,為了讓住家、通勤動線、商圈與觀光熱點等高使用場域維持穩定表現,台灣大哥大已在全台超過213個住宅、觀光及商圈熱點完成 100MHz 布建,提升人流密集區的網路覆蓋率。

5G高速(小).jpg
圖/ dreamstime

值得注意的是,在今年的 Opensignal 評比中,台灣大哥大還拿下了「5G 語音體驗」與「網路可用率」兩項第 1 名,累計獲得 4 項獎項。這意味著不僅具備影音體驗優勢,在語音互動與連線率等關乎用戶日常應用的基礎指標,皆有亮眼成績。

尤其,隨著影音與即時互動成為新世代的工作常態,網路品質的重要性只會持續上升。無論是遠距協作所仰賴的視訊與畫面共享即時同步,內容創作對直播與即時上傳連續性的要求,或是 AI 視訊互動、即時翻譯與會議摘要等新應用,都高度依賴低延遲與穩定的資料傳輸。網路品質因此不再只是連線條件,更是支撐內容生產、協作效率與新應用落地的基礎能力,甚至直接牽動競爭力。

而台灣大哥大經 Opensignal 認證、於多項關鍵指標領先業界,不僅將成為 AI 時代的重要後盾,也讓使用者能更充分發揮高階手機的效能,把「快、穩、滑順」落實在每天的工作與生活中。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓