道歉也有公式可學?他教會Uber如何應對失誤,簡單一招比千百句對不起更有效
道歉也有公式可學?他教會Uber如何應對失誤,簡單一招比千百句對不起更有效

里斯特的實驗證明: 人都是現實的,千萬句道歉,都比不上一張折價券

如果你剛剛跟另一半大吵一架,現在正煩惱著該如何道歉,那麼有「教會Uber道歉的男人」封號的芝加哥大學經濟學教授里斯特(John August List)找出的最佳道歉法,或許就是你正在尋找的解答。

John August List
芝加哥大學經濟學教授里斯特
圖/ 維基百科

2017年的某個早晨,里斯特叫了一台Uber,準備前往芝加哥市中心參加一場會議。沒想到,Uber的APP陰錯陽差地帶了司機繞了一大圈,最後又走上往里斯特家方向的路,讓里斯特當天的行程大受影響。

更讓里斯特生氣的是,當時的Uber對此一聲不吭,連一封道歉信都沒寄。

Uber該如應對「出錯」?

當天晚上,身為Uber首席經濟學家的里斯特立刻打電話給當時的Uber執行長卡拉尼克(Travis Kalanick),劈頭直說:「這趟旅程爛透了,我再也不會用你的APP了。而且最糟糕的是,我連一句道歉都沒收到。」

讓里斯特發洩完後,卡拉尼克則說:「我想知道的是,發生這種狀況時,Uber該怎麼辦?」

Uber該怎麼做才能在一次糟糕的乘車體驗後,依然留住乘客的心?

限編輯用_Uber_Prathan Chorruangsak_Shutterstock.jpg
圖/ Shutterstock

從Uber的內部數據來看,實際抵達時間比預定抵達時間慢5分鐘以上的顧客,他們的未來花費平均會減少5%-10%。換句話說,如果能找出一個足以挽回乘客的道歉方案,Uber每年就有機會多賺好幾百萬美元回來。

找到一個挽回乘客的道歉方式 」成為里斯特的首要研究目標。

里斯特將焦點鎖定在比預估時間晚10–15分鐘抵達目的地的乘客身上。首先,里斯特的團隊擬定了4種道歉內容。每當需要寄送道歉信時,系統會先隨機選擇一種道歉內容,再隨機選擇是否附上一組5美元(折台幣約146元)折扣碼,讓乘客們下次使用。

至於Uber的道歉是否有用,則由該名乘客往後一段時間內的消費金額增減來判斷。

4種道歉內容的主旨大致如下:

  1. 不道歉

  2. 基本型道歉(Basic apology):糟糕,您的乘車時間比我們預計的還長……

  3. 陳述事實型道歉(Status apology):Uber意識到我們的預測並不準確……

  4. 附帶承諾型道歉(Commitment apology):Uber正努力改善,以便未來提供更準確的預計抵達時間……

研究過約150萬名的Uber乘客後,里斯特的團隊發現收到5美元折扣碼的乘客,接下來幾個月內的Uber花費會增加;而僅收到道歉、沒有折扣碼的乘客,往後幾個月的Uber花費會減少。

研究團隊表示,「我們最主要的發現,就是道歉本身並不能恢復企業的信譽,一組未來可供使用的折扣碼才能。」

千百句道歉比不上一組折扣碼,企業必須承擔的損失

對於這項研究,里斯特教授說道:「當企業要道歉時,關鍵是企業必須讓顧客知道『 企業為此付出真實代價 』。」

里斯特表示,若是在更廣泛、更普遍的道歉情境中,提出道歉的人承受的未必會是金錢上的損失,有時甚至會以名譽的損失呈現。

然而,「附上折扣碼」並不是百戰百勝的道歉方式。如果出現第二、第三次延誤,「附上折扣碼」反而會減少乘客的未來消費。原因在於,顧客們通常會期待每次道歉之後,Uber應該有所進步,當同樣事件再度發生,也就表示乘客的期待落空,其花費自然會隨之減少。

shutterstock_511172077_sorry.jpg
圖/ Antonio Guillem via shutterstock

社會學家眼中的最佳道歉公式

這項研究也獲得美國羅格斯大學(Rutgers University)的社會學家克魯洛(Karen Cerulo)的認可,她說道:「人們在乎的是道歉者的後悔及其付出的代價,道歉的原因、方式反倒沒那麼重要。」

「終於有人找出可以應用的道歉公式:找出誰是受害者、表現出後悔之意,承擔責任並在合理範圍內補償對方。」

責任編輯:文潔琳
本文授權轉載自:地球圖輯隊

關鍵字: #Uber
往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓