道歉也有公式可學?他教會Uber如何應對失誤,簡單一招比千百句對不起更有效
道歉也有公式可學?他教會Uber如何應對失誤,簡單一招比千百句對不起更有效

里斯特的實驗證明: 人都是現實的,千萬句道歉,都比不上一張折價券

如果你剛剛跟另一半大吵一架,現在正煩惱著該如何道歉,那麼有「教會Uber道歉的男人」封號的芝加哥大學經濟學教授里斯特(John August List)找出的最佳道歉法,或許就是你正在尋找的解答。

John August List
芝加哥大學經濟學教授里斯特
圖/ 維基百科

2017年的某個早晨,里斯特叫了一台Uber,準備前往芝加哥市中心參加一場會議。沒想到,Uber的APP陰錯陽差地帶了司機繞了一大圈,最後又走上往里斯特家方向的路,讓里斯特當天的行程大受影響。

更讓里斯特生氣的是,當時的Uber對此一聲不吭,連一封道歉信都沒寄。

Uber該如應對「出錯」?

當天晚上,身為Uber首席經濟學家的里斯特立刻打電話給當時的Uber執行長卡拉尼克(Travis Kalanick),劈頭直說:「這趟旅程爛透了,我再也不會用你的APP了。而且最糟糕的是,我連一句道歉都沒收到。」

讓里斯特發洩完後,卡拉尼克則說:「我想知道的是,發生這種狀況時,Uber該怎麼辦?」

Uber該怎麼做才能在一次糟糕的乘車體驗後,依然留住乘客的心?

限編輯用_Uber_Prathan Chorruangsak_Shutterstock.jpg
圖/ Shutterstock

從Uber的內部數據來看,實際抵達時間比預定抵達時間慢5分鐘以上的顧客,他們的未來花費平均會減少5%-10%。換句話說,如果能找出一個足以挽回乘客的道歉方案,Uber每年就有機會多賺好幾百萬美元回來。

找到一個挽回乘客的道歉方式 」成為里斯特的首要研究目標。

里斯特將焦點鎖定在比預估時間晚10–15分鐘抵達目的地的乘客身上。首先,里斯特的團隊擬定了4種道歉內容。每當需要寄送道歉信時,系統會先隨機選擇一種道歉內容,再隨機選擇是否附上一組5美元(折台幣約146元)折扣碼,讓乘客們下次使用。

至於Uber的道歉是否有用,則由該名乘客往後一段時間內的消費金額增減來判斷。

4種道歉內容的主旨大致如下:

  1. 不道歉

  2. 基本型道歉(Basic apology):糟糕,您的乘車時間比我們預計的還長……

  3. 陳述事實型道歉(Status apology):Uber意識到我們的預測並不準確……

  4. 附帶承諾型道歉(Commitment apology):Uber正努力改善,以便未來提供更準確的預計抵達時間……

研究過約150萬名的Uber乘客後,里斯特的團隊發現收到5美元折扣碼的乘客,接下來幾個月內的Uber花費會增加;而僅收到道歉、沒有折扣碼的乘客,往後幾個月的Uber花費會減少。

研究團隊表示,「我們最主要的發現,就是道歉本身並不能恢復企業的信譽,一組未來可供使用的折扣碼才能。」

千百句道歉比不上一組折扣碼,企業必須承擔的損失

對於這項研究,里斯特教授說道:「當企業要道歉時,關鍵是企業必須讓顧客知道『 企業為此付出真實代價 』。」

里斯特表示,若是在更廣泛、更普遍的道歉情境中,提出道歉的人承受的未必會是金錢上的損失,有時甚至會以名譽的損失呈現。

然而,「附上折扣碼」並不是百戰百勝的道歉方式。如果出現第二、第三次延誤,「附上折扣碼」反而會減少乘客的未來消費。原因在於,顧客們通常會期待每次道歉之後,Uber應該有所進步,當同樣事件再度發生,也就表示乘客的期待落空,其花費自然會隨之減少。

shutterstock_511172077_sorry.jpg
圖/ Antonio Guillem via shutterstock

社會學家眼中的最佳道歉公式

這項研究也獲得美國羅格斯大學(Rutgers University)的社會學家克魯洛(Karen Cerulo)的認可,她說道:「人們在乎的是道歉者的後悔及其付出的代價,道歉的原因、方式反倒沒那麼重要。」

「終於有人找出可以應用的道歉公式:找出誰是受害者、表現出後悔之意,承擔責任並在合理範圍內補償對方。」

責任編輯:文潔琳
本文授權轉載自:地球圖輯隊

關鍵字: #Uber
往下滑看下一篇文章
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎
從新零售到新商務,騰雲科技以兩大策略打造新世代成長引擎

騰雲科技持續展現強勁成長,不僅連續五年維持雙位數的營收增幅,更於 2025 年前三季累計營收來到 5.47 億元、淨利 1.03 億元,年成長率高達 67%,顯示騰雲科技已從智慧零售解決方案供應商擴展成為智慧社區、智慧城市解決方案供應商,並持續發揮高毛利、高成長、以智慧場域資料為核心驅動的代理式 AI 解決方案全方位供應商。

騰雲科技是怎麼辦到的?

騰雲科技董事長暨總經理梁基文不藏私分享兩大關鍵:「首先是以 AI 賦能的產品與服務,協助客戶提升效率、優化營收;其次是透過騰雲孵化器與其生態系中新創夥伴協作,打造零售、不動產、製造與數位保險等產業所需的新商務服務。」

以 AI 賦能全產品線,強化客戶黏著度、深化長期關係

梁基文表示:「AI 不是單一產品或立即變現的技術,要能有效消除資訊不對等,需協助企業先將散落的資料整合成數據資產,才能找出能驅動決策的洞察。」因此,要讓 AI 真正落地,需要同時理解產業現況與營運痛點的夥伴,才能把技術與數據轉化為具體價值,成為企業成長的新引擎。

有鑑於此,騰雲科技的策略是推出 AI Agent 平台 –TrendVotex,由深耕百貨零售、商業不動產等產業的專業團隊協助打造符合場景需求的 AI 代理服務。

例如,為百貨零售打造的「AI 品牌行銷專家」透過市場輿論進行趨勢及同業動態分析、以口碑行銷進行品牌塑造、針對會員數據進行自動化文案生成及傳播、針對行銷成果進行效益分析等自動化決策,「AI 招商助理」則能整合商圈熱度、樓層營運狀態等資訊,提出精準的櫃位調整與招商策略。至於針對複合式商業不動產管理場景推出「AI 能源智慧管理」服務,導入 AIoT 終端裝置佈署並運用其感測數據與歷史異常紀錄,預測設備故障風險,協助排程維修,降低停機時間,大幅提升營運績效。

梁基文補充說明:「除了協助企業打造專屬 AI 代理與串接代理式工作流程(Agentic Workflow),我們也推出 Marketing、Content、Sales、Manufacturing 等跨產業可重複使用的 AI 代理模組,加速零售、不動產、製造、旅遊與數位保險服務等產業的導入腳步。」

值得注意的是,為真正發揮、極大化 AI 價值,騰雲科技不僅提供技術,也協助企業梳理流程、整合分散數據,打造可支撐多場景的數據驅動營運中台。

梁基文表示,不只零售業正加速虛實通路整合,製造與金融服務業也十分重視「全通路數據」,例如製造業需要即時掌握生產過程關鍵數據指標與庫存狀況以確保良率及產能、數位保險業則積極深化對顧客旅程的掌握以完善服務能量等,騰雲科技推出「隨開即用」、雲地整合的 AI 平台,讓企業能在多場景中無縫串接數據並兼顧資訊安全,充分展現「From Insight to Intelligence」價值。

例如,協助數位保險整合顧客的「線上資料(如客戶資料、風險判斷」與「線下數據(如客戶活動數據、場域營運數據)」,透過 AI 進行產品推薦、簡化內部核保作業流程,並提供更加順暢的一致體驗,讓保險也能像零售一樣真正做到懂顧客。

「接下來,我們會把在百貨零售與商業不動產驗證過的技術,進一步擴大到製造、數位保險等產業,讓價值放到最大。」梁基文如是說道。

騰雲科技
騰雲科技董事長暨總經理梁基文
圖/ 數位時代

五大技術、四大產業,騰雲科技以孵化器成就下一個十年

梁基文表示:「過去 10 年,我們專注在『新零售・新生活』;接下來將延伸至『新商務・新生活』,透過收購、合資、投資等方式與外部夥伴共創新的成長動能。」

具體做法是以 ABCDE(AI、Blockchain、Cloud、Data、Experience)五大技術為核心,鎖定零售、不動產、製造與金融服務四大產業,透過外部合作與孵化機制強化解決方案的廣度與深度:整合現場設備、門市裝置、POS、排隊系統、取貨流程、感測器與後勤運作,推出 AIoT 智慧場域管理方案,滿足跨場域、跨產業與跨國企業的需求。

例如,協助泰國五星級酒店導入 AIoT 智慧場域管理方案以優化能源設備管理、降低營運成本並提升使用者體驗等。明(2026)年,騰雲科技計畫將 AIoT 智慧場域管理方案推向製造業廠房,協助客戶管理冷氣、燈光等能源設備並進行碳管理,同時,透過監控產線設備的振動與溫度等數據,提供 AI 預判的設備維修時機(Preventive Maintenance),擴大數位與綠色雙軸轉型的綜效。

除以集團力量推廣 AIoT 智慧場域管理方案,騰雲科技亦積極擴大相應的生態體系發展:首先是與跨業夥伴一同延伸 AIoT 智慧場域管理方案 的應用範疇,如與保險業者合資成立數位保險公司以提供 AI-Ready 數位應用方案;其次是建立消費者生態體系以發揮「新商務‧新生活」的相互影響綜效。例如,騰雲科技子公司騰加數位將擴大 AIoT 平台運營版圖,深入零售、商辦與飯店等多元場景,並以此為載體整合數位支付、會員數據與數位內容傳播等應用,藉此強化場域的智慧化能力,以及拓展騰雲解決方案的落地深度與廣度。

「透過 AIoT 智慧場域管理方案、營運中台與 TrendVotex 等產品與服務,我們不僅能更精準回應台灣、日本與東南亞市場在流程自動化、營運效率提升上的需求,也能同步改善大眾的日常體驗,真正落實『新商務・新生活』的共好價值。」關於未來的發展,梁基文如是總結。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓