企業導入AI的初步商業評估
企業導入AI的初步商業評估

自從2016年,AlphaGo以4勝1敗的戰績擊敗了世界棋王,人工智慧(AI)開始被視為繼網際網路與智慧型手機的發明之後,必將會帶來第三次重大改變人類生活的科技革命。在這股趨勢下,許多工商團體都提倡呼籲要導入AI,進行產業的數位轉型,不過至今為止,除了大集團企業積極啟動AI的部署之外,大部分的中小企業則多半沒有太多動靜。

目前AI的落地應用,主要涵蓋的範疇有:

  1. 金融科技
  2. 農業
  3. 醫療與防疫
  4. 自駕無人車
  5. 無人商店
  6. 長照看護
  7. 客服(聊天機器人)
  8. 物流倉儲

Google、微軟、Amazon等這些科技巨擘已經推出不少具體的AI服務,雖然其中有許多功能仍在起步階段,還正在不停的測試與迭代,然而根據美國科技專業研究機構國際數據資訊(International Data Corporation, IDC)在2018年3月,公布全球對於AI的技術研究支出總額調查是191億美元,相較2017年增加54.2%,預計2021年底前將上看522億美元,顯見AI的蓬勃發展是可預期的。

7-11.jpg
圖/ 截圖自YouTube

一般的企業公司若想要導入AI,該從何開始下手呢?首先,應該要釐清一個概念上的認知, 自動化並不等於智慧化,自動化是幫助你完成執行(做),智慧化是幫助你完成決策(怎麼做) 。比如工廠生產線的設備,使用者按下電源開關,材料被輸送進入機器,即可按照既定的程序被做成規劃好的產品,這樣的過程是自動化;而能夠因應不同環境或變動條件,對當前的狀況達成判斷、辨識與預測,以利使用者做出下一步的決策行動,這才是智慧化。

延伸閱讀:找出AI「真實力」,商業價值無限大

目標不是AI,解決問題才是重點

許多企業之所以想要導入AI,是因為現在AI的話題被炒得很熱、AI的強大一再被新聞媒體報導,比如人臉辨識不只已經被落實在門禁系統,更預期在不久的將來,可以使用AI來提款、算命、應徵面試、保險健康判斷、表情測謊等等,靠臉吃飯、以貌取人的時代即將來臨。

許多企業誤以為只要能成功導入AI,後續就一切萬事大吉,但這恐怕是搞錯努力的重點、落入盲目的趨勢跟風。同樣也是必須要先建立一個認知上的理解,所謂的導入AI, 目標不是為了擁有AI技術,而是AI可以幫助解決什麼問題 ,換句話說,重點應該聚焦在怎麼解決企業的問題。

以人臉辨識為例,如果人員A帶著人員B的面具、或人員A拿一張人員B的照片來對著攝影機鏡頭,人員A是否就能被判定為人員B而通過門禁系統呢?於是在系統加入一個新功能,即要求鏡頭前的人必須眨眼或搖頭來辨識這張臉不是照片或面具;但如果人員A事先錄製人員B眨眼跟搖頭的影片,拿來在攝影機前播放,這樣是否又能騙過系統呢?於是系統又加入可以判斷3D影像與可以偵測皮膚微血管顏色變化的功能,來辨識這張會眨眼跟搖頭的臉是不是一張真實的人臉……

AI判斷眨眼.jpg
AI判斷眼睛是否眨眼。
圖/ 紀長興提供

對於處理活體檢測(Liveness Detection),也就是區分系統前的人臉是真的人臉,還是照片、面具或影片, 要如何解決這個問題才是導入AI這件事情的重點 ,要怎麼做可以有很多種方式,目標是要能解決問題。方法並不侷限於單一形式,而是可以經由組合而成,甚至不是使用機器學習或深度學習也沒關係。

(編按:現在已有廠商開發出透過距離與光影的運算,檢測前方的人臉真偽,成效有待評估。)

不是只有AI才能智慧化,其他方法也有機會能夠一起完成智慧化 ,以汽車駕駛的安全監控為例,在駕駛座上方裝設攝影機拍攝司機,若判斷當司機眼睛閉起來的時間過長、打哈欠、看手機、低頭、左右張望沒有注視前方……狀況發生時,即立即觸發警報並發送訊息告知後端管理員,此外,也能藉由司機身上的穿戴裝置,紀錄血壓、心跳和血糖等生理狀態,一旦檢測到不正常的數據,便立即發出警告通知,加強預防意外發生。

AI的鐵三角——技術,資料,問題

有一家洗衣店本來是由人工一件一件區分衣服是外套、襯衫或長褲,再經由不同的項目定價來結算總金額,現在洗衣店計畫轉型成無人洗衣店,上述動作打算全部改由機器來完成,一開始的部署該怎麼做呢?

首先是裝設攝影機,攝影機的畫面經過內部晶片的一連串影像處理後,再對資料進行外套、襯衫、毛衣、長褲、短褲、裙子等等不同衣物的辨識,再將結果傳遞給電腦,電腦結算金額後,最後透過印表機列印出來給客人。

針對此案例,進行導入這個系統的初期實務分析:

(一)技術

攝影機之所以能夠辨識衣服,是晶片上載入了一個事先訓練好的模型,在此以Google Cloud Platform(GCP)提供的兩個方法為例,其他不同的方法也與這兩個方法原理類似。

  1. 使用Machine Learning API寫成應用程式後,將應用程式放在攝影機上的CPU執行。Machine Learning API是Google根據不同領域,已經訓練好的機器學習模型,應用程式直接呼叫API即可得到辨識結果。

  2. 使用TensorFlow這個框架訓練出自己的模型,再將模型置入攝影機上的晶片執行,同樣需要開發CPU上的應用程式,任務是與晶片上的模型溝通與交換資料,應用程式就可以得到辨識結果。

大企業或大公司會建立自己的技術部門,工程問題只要責成相關部門去處理就行了,但若是中小企業,或像是洗衣店這種家庭式經營的小店,如果沒有技術團隊,最簡單的做法是委外發包,所需要負擔的是外包與使用GCP的費用。

(二)資料

採取上述的第1個方法,也就是使用Machine Learning API,這在難度上會是比較簡單的,但假如飲料公司想要辨識出自家的飲料與別家公司的飲料,那恐怕就窒礙難行了,因為每家飲料的外型包裝可能很接近,都是鋁箔包、寶特瓶或易開罐,而Machine Learning API所提供的是泛通用的模型,如果需要高度客製化,比如辨識出飲料瓶裝上的Logo,那就要採用上述的第2個方法,訓練出自己的模型。

至於自己訓練模型的最大麻煩之處,在於訓練資料的蒐集,以無人洗衣店為例,需要準備各式各樣的衣服照片,若以飲料公司為例,則是準備各種飲料的照片,而照片數量通常都需要至少幾十萬張以上。
在此,有幾個問題必須特別注意:

  1. 不是所有照片都能當作訓練的素材,有些照片光影灰暗不清,或構圖複雜,不僅無法幫助訓練,還可能會破壞訓練效果。

  2. 有些訓練方法需要事先標記(Label)衣服在照片裡的座標位置,這樣執行訓練的程式才能知道照片中的什麼位置是衣服,程式才得以進行學習這是衣服。而對照片做標記是一項極度耗費人力的工程,企業可以自行處理,當然也可以付費外包給專業的labeling公司處理。

  3. 訓練所需的資料雖然也可以花錢購買,但建議最好是使用企業內部產生的資料當作訓練素材,因為企業所產生的資料最符合企業真正實際的環境狀況,因此能得到最接近正確的訓練效果。不過,另一個衍生出來的問題是, 你會願意把這些寶貴的資料交給外包的軟體技術團隊或者是硬體的設備供應商嗎?雖然他們可以透過這些資料幫你調校系統,達到優化改善,但這也等同於幫助其他競爭對手優化改善

  4. 承第3點,還需要考量這些資料 是否涉及客戶資訊 ,是否可能發生個資外洩的疑慮。

(三)問題

企業需要解決問題、以提供服務、並得到效益。以洗衣店為例,是透過AI打造無人洗衣店,解決人力不足問題,可以24小時提供服務,樽節成本,之後展開連鎖店經營,擴大營收。

因此確立目標與評估問題是最一開始就要先進行的,因為這些都會影響到上述的(一)技術與(二)資料所採取的策略。而且評估問題時必須抱持開放,因為問題的發生肯定是動態變化的,很難一開始就能完全預期掌控,所以(一)技術會需要不斷改良與修正程式,(二)資料也會需要調整更能符合實際需求的資料。目標確立之後,問題、技術與資料這三者,會相互影響並且需要多次的迭代。

AI三角鐵.jpg
AI的鐵三角—技術、資料、問題。
圖/ 紀長興提供

比如洗衣店的攝影機在辨識外套、襯衫、長褲等等,已經達到高度正確率,可是如果將衣物摺起來或是亂扭成一團,攝影機就會無法辨識,諸如此類的問題,在各種不同的案例中,都會時常發生。

AI辨識.jpg
圖左為可以被辨識的長褲;圖右則辨識失敗。
圖/ 紀長興提供

他山之石,可以攻錯

本文盡量避免使用技術上的專有名詞,主要是想讓非技術領域的人士也可以快速理解,在企業導入AI初期的實務上,與技術會有相關聯的因素,以及一些對於智慧化認知上的理解,而這些都將會左右整體部署的商業思維。

shutterstock_696112645_AI.jpg
圖/ NicoElNino via shutterstock

AI的範疇相當廣,而在實際應用上所遭遇到的問題,雖然未必一開始就可以全部預測,但還是要先針對問題聚焦,設計出對應的方法解決,一定要先聚焦,並且一次解決一個問題,逐漸的迭代和優化。

大公司能夠從頭到尾打造專屬於自己的AI系統,而就資金與人力上的考量,中小企業若想導入AI,還是可以利用Google、微軟或Amazon已經架構好的平台往上開發,站在巨人的肩膀上同樣也可以看得很廣、走得很遠。

有人說現在AI的熱度只是一時的,就像上世紀末的網際網路崛起,到本世紀初就發生網路泡沫化,但從歷史來看,網際網路的發展絲毫沒有衰退或停滯,反而是更加活躍的往前行進,一路下來興起了網拍、電商、影音串流、雲端服務、社群媒體等等這些徹底顛覆改變人類生活的應用。

同樣的,AI亦是相同,科技的發展始終來自於人性的追求,人性的追求不停止,科技的發展便不會停止,相信終有一天,AI甚至可以幫助推斷出嬰兒、甚至寵物想表達但無法用語言表達的內容。

參考資料:
1. 中國信託商業銀行》ATM刷臉提款 AI防詐防窺
2. 機器學習、深度學習傻傻分不清?這是關鍵“魔法”所在

責任編輯:文潔琳

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場)

往下滑看下一篇文章
打造AI無法取代的人才力,聯發科技攜手Hahow for Business培育跨域人才成果豐碩
打造AI無法取代的人才力,聯發科技攜手Hahow for Business培育跨域人才成果豐碩

在AI新世代浪潮下,兼具軟實力與硬實力的「T型人才」已躍升為企業人才培訓的新焦點。以聯發科技攜手 Hahow for Business 推出的「SPARK 實習生跨域軟實力學習計畫」為例,正是企業積極布局未來、培育全方位新世代人才的具體行動。

人工智慧的快速演進,正全面重塑我們對「學習」與「人才」的想像。隨著知識獲取門檻變低、學習方式持續翻轉,企業人才培育模式也迎來嶄新變革。在這波轉型浪潮中,擅長單一領域的「I型專才」往往難以應對多元挑戰,相反的,具備專業深度與跨域協作能力的「T型人才」成為企業招募與培育的核心焦點。

以理工科學生為例,雖然在校期間累積了紮實的專業知識與技術基礎,但往往在進入職場後,因為溝通表達、協同合作與專案管理等軟實力相對薄弱,面臨諸多挑戰、無法發揮潛力。為縮短「學用落差」與提升新鮮人的職場適應力,聯發科技攜手Hahow for Business在2025年共同推出「SPARK 實習生跨域軟實力學習計畫」,將工程師的個人效能訓練藍圖,提前至實習階段。計畫透過Learn-Apply-Reflect與10%-20%-70%學習策略,打造出「自主學習→練習→實際應用」的學習循環,全面加速準聯發人的培養、為企業注入新世代的競爭力。

聯發科技與Hahow for Business以「SPARK 實習生跨域軟實力學習計畫」加速培育人才

聯發科技始終堅信,每一位年輕人都蘊含著無限的發展潛力,只要能匯聚多元能力,即可激盪出創新火花、點燃成長的力量。這樣的理念也體現在「SPARK 實習生跨域軟實力學習計畫」logo設計:6道光芒象徵聯發科技永續經營的六大基石–全球觀、創新、人才、公司治理、綠色營運與在地實踐;而5道光芒則代表個人效能聚焦的5項關鍵能力:問題分析與解決、溝通簡報與影響力、專案管理、創意思維與成長心態。

SPARK計畫為實習生提供清晰的學習路徑,結合豐富的線上學習資源、個人練習與小組作業,同時搭配實體知識萃取工作坊,形成自主學習、同儕學習與應用及反思的學習循環。讓實習生不僅可以學習知識與實用技能,並真正將軟實力應用於工作場域。舉例來說,線上課程學習涵蓋「金字塔表達法」、「定錨點架構」、「ANSVA結構」與「SMART原則」等工具,並在為期兩個月的實習中,透過每週的應用練習、知識萃取工作坊與同儕小組報告,系統化強化關鍵軟實力,讓學習不僅止於「知識的獲取」更是「行為的展現」。

hahow
圖/ 數位時代

來自國立清華大學通訊工程研究所的實習生彭同學深有感觸的說:「能進入同一間公司,代表大家的硬實力相差不大,真正決定我們能否做對事情、把事情做好,是有沒有足夠的軟實力協同合作與向上管理,建議從大學三年級開始培養,並且持續不斷精進。」

國立清華大學半導體研究學院的實習生鄭同學同樣肯定軟實力的重要性。她說:「在學校,教授指派任務通常有明確的評分指標,但在實習時,主管交付的任務往往保留很大的自由發揮空間,為確保彼此有共識,我的作法是主動思考任務的目的,以手寫筆記進行結構性思考與建立清晰的表達邏輯,在與主管進行口頭報告時,則是以『金字塔表達法–先結論、後細節』的方式進行溝通,持續修正與取得共識、精準展開下一步。」

「理工科學生很容易陷入技術細節、分享時不自覺就是滿滿的專業術語,但這樣的溝通模式未必有助於專案進展。」來自國立陽明交通大學資訊網路工程學系的實習生洪同學表示,有效的溝通應該要跳脫技術本位,站在對方角度,說出讓目標聽眾共鳴的話,才能推進合作。「透過這次實習,我學會以『定錨點架構』讓溝通內容更有邏輯與說服力,以及透過『ANSVA–Attention /Need /Solution /Visualization /Action–架構』強化提案表達,就算面對全新的領域,也能快速盤點重點,並與團隊展開更有效的協作。」

「SPARK 實習生跨域軟實力學習計畫」創造的成效十分亮眼。活動期間在校園舉辦的多元跨域校園講座滿意度高達 94.6%;而在實習階段,儘管實習生同時承擔主管指派的專案任務,平均完課率仍高達 87%,並獲得大量正面回饋。許多實習生分享:「無論未來職涯選擇何種方向,這段期間累積的軟實力,都將成為持續突破與創新的關鍵資產。」

三大學習目標,支持年輕人才快速適應跨部門協作及全球化職場環境

聯發科技長期深耕技術創新與人才培育,積極推動學生硬實力與軟實力的緊密整合,以加速新世代人才的成長與轉型。此次首度與Hahow for Business合作「SPARK 實習生跨域軟實力學習計畫」實踐三大學習目標:首先建立創新與成長心態;其次強化簡報與溝通影響力及團隊合作;最後,培養問題解決、專案管理與行動決策能力。

Hahow
圖/ 數位時代

同時參加「SPARK 實習生跨域軟實力學習計畫」與3個不同專案計畫的國立清華大學資訊工程研究所實習生李同學表示:「實習期間,我必須同時處理三個專案,時間被各種會議切割得十分零碎,參加每場會議前,我至少得花費10分鐘翻閱紀錄或回想進度,改用實習期間學會的心智地圖追蹤專案進度後,只要 1 分鐘就能快速掌握最新狀況,執行效率大幅提升。」

國立台灣科技大學電機工程研究所的實習生董同學則認為:「軟實力之所以重要,不僅因為它能幫助我們在事前做好規劃、提升溝通的精準度,更關鍵的是,隨著這些能力不斷累積,將更有勇氣面對挫折與挑戰,不會輕易喪失對科技或對人的熱情。」

整體而言,聯發科技攜手 Hahow 好學校的合作,不僅著眼於短期彌補能力缺口,更展現企業對未來人才的前膽佈局與長期投資。當理工學生兼具專業深度與跨域軟實力,學用落差得以有效縮減,人才成長曲線隨之加速,產業也能在新世代人才的驅動下持續創新,形成良性循環,進一步鞏固組織的核心競爭力。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓