鋰電池限制智慧產品的想像!科學家正在用病毒打造未來電池
鋰電池限制智慧產品的想像!科學家正在用病毒打造未來電池

新冠病毒,已經成為目前全世界最大的敵人。

它讓很多人只能「自囚」於家中,社畜們結束了996生活,卻迎來了007的在家辦公,還逼得小學生組隊給網路課程軟體打一星。

延伸閱讀:中國工程師抗議「996」高工時,馬雲:我們不缺8小時上班很舒服的人

它讓我們不得不壓抑自己的消費慾望,全球電影業因疫情面臨50億美元(約新台幣1,504億元)損失,全球航空業的收入則可能減少1,130億美元(約新台幣3.4兆元)。

在這個特殊時期,似乎沒有人想和病毒扯上關係,可也有科學家想利用病毒造福人類。

麻省理工學院的一位生物工程教授安吉拉·貝爾徹(Angela Belcher),已經成功研製出用病毒製造的電池,而她的終極夢想,是能夠駕駛由「病毒電池」驅動的汽車。

延伸閱讀:電動車技術大突破!IBM用海水提煉「未來電池」,攜手賓士一年後推成品

製造病毒電池

病毒電池其實不是最近才出現的技術,早在2009年,由安吉拉·貝爾徹帶領的科研團隊就已經利用一種直徑只有6奈米的病毒,製造出只有細胞大小的微型電池。

這項研究還吸引了時任美國總統歐巴馬的興趣,貝爾徹受邀前往白宮為歐巴馬展示了這種病毒電池。當時歐巴馬正計劃投入20億美元(約新台幣601億元)用於支持新電池技術的開發,而貝爾徹的病毒電池則揭示了電池領域一個新的方向。

到底科學家是怎麼用病毒來製造電池的?病毒電池和普通電池又有什麼不同?要解答這些問題,首先需要簡單了解電池的工作原理。

一般的鋰電池的放電和充電,是內部的鋰離子透過電解液在正極和負極之間運動實現的,正極使用的材料一般為磷酸鹽,無論是硫酸鹽還是鋰離子,這種材料也廣泛存在地球各種生命體中,因此用生物來製作電池在邏輯上是可行的。

圖
圖/ 愛范兒

不過要製造這種電池,首先就要找到可以充當電極和導線的生物結構。一開始貝爾徹打算用採用人造神經纖維,因為動物的神經纖維末梢就是天然的奈米導線,但這種方式的成本和技術難度都太高,最終只能放棄。

後來貝爾徹在鮑魚殼身上找到了答案,他們發現鮑魚可以分泌出一種蛋白質,可從富含礦物質的水中提取碳酸鈣分子,並讓其在體內定向排列,從而形成鮑魚殼。於是貝爾徹將編碼這種蛋白的基因移植到病毒,讓病毒擁有生成奈米結構的能力,用來製作電極和導線。

貝殼
鮑魚殼
圖/ 愛范兒

在自然情況下,鮑魚要形成一個完整的貝殼需要15年,而經過基因編輯,在實驗室內病毒生產一個電極只需要兩星期。

研究團隊在分析了數百萬種病毒後,最後選擇了M13噬菌體,這是一種形似雪茄的病毒,直徑只有6奈米,長度880奈米。這種病毒除了可以將機械能轉化為電能,而且遺傳物質簡單,易於操控。

圖
圖/ 愛范兒

與鮑魚類似,這種病毒會在表面生成一種蛋白質,吸附氧化鈷微粒並覆蓋在外殼,當數百萬個病毒連接起來,就能形成一條氧化鈷線,可以作為電極使用。

在這個過程中,這些連成一線的病毒都是活的。眾所周知,病毒需要宿主才能存活,研究人員將病毒感染無害的細菌,來大量複製病毒。

透過這種方式製造的電池,不僅能提升電池的能量密度、壽命和充電效率,生產過程也更加環保。 相比於微型電池所用的碳奈米管電極材料,病毒組裝而成的電極儲能效率提升了兩倍。

圖
普渡大學研發出的銻納米鏈負極
圖/ 愛范兒

將奈米結構用於電池作為電極材料,近年來被認為是突破目前鋰電池瓶頸的一個重要方向。因為奈米電極能更多、更快地吸收和釋放帶電離子,因此可以將電池做得更小、更輕、且容量更大。

約翰·霍普金斯大學應用物理實驗室的高級電池研究科學家康斯坦丁諾斯·杰拉索普洛斯(Konstantinos Gerasopoulos)表示,使用病毒的好處在於,它們本身就以「奈米」的形式存在,本質上就是用於合成電池材料的天然模板。

當然你可能會擔心,利用病毒製造電池,萬一病毒洩露感染人類,不就危險了嗎?

貝爾徹表示,他們使用的病毒均已經過無害化基因改造,只會感染特定的細菌宿主,而且並不致命,只會使被感染細菌的生長速度減慢。此外這種電池報廢後可生物分解,不會像過去的鋰電池一樣對環境造成污染。

經過10年的研究,貝爾徹的病毒電池已經取得了不少新的突破。病毒已經可以和150多種材料一起使用,用以製造太陽能電池等產品。

雖然目前這種病毒電池只能給手電筒,雷射光筆,手錶和LED燈等小型電子裝置供電,但是貝爾徹一直在嘗試將這種技術推出市場,她共同創辦了兩家生物科技公司,Cambrios Technologies和Siluria Technologies,就是利用病毒來合成用於觸控螢幕的奈米線,以及將二氧化碳轉化為乙烯。

但要實現貝爾徹理想中的「病毒電池驅動的汽車」,目前還難以做到,病毒電池的商業化存在兩個比較大的問題。

一是病毒體積太小,可一般電池工廠所需的原材料高達數十噸,以目前的生物分子技術實現這種規模的量產並不容易,但杰拉索普洛斯也表示「這個障礙未來並非無法克服」。

二是病毒電池部分性能還比不上傳統的電池,貝爾徹曾用病毒製造太陽能電池,但其技術效率無法和鈣鈦礦型太陽能電池相提並論。

前面提到的鮑魚,能有序地排列鈣分子形成外殼,病毒電池雖然借鑒了這一原理,但目前病毒組裝的電極結構依然是隨機的,貝爾徹團隊正在研究如何讓病毒生成更加有序的電極結構。

儘管目前病毒電池還不夠成熟,但貝爾徹表示,她的研究是希望用生物技術來解決一些目前尚未解決的問題。

除了病毒電池,貝爾徹還利用病毒組裝技術開發出能發現腫瘤的奈米粒子,可以發現那些以為體積太小而無法被醫生發現的癌組織,這對早期癌細胞的檢測有很大提升。

當這種病毒奈米粒子進入體內,會定向附著在癌細胞上,在紅外光照射下會發出螢光,以此來標記癌細胞的位置。在對小鼠的實驗中,這項技術成功讓接受卵巢癌手術的小鼠壽命延長40%。

100多年前,人類就開始用細菌發電

用病毒製造電池這一概念看似新穎,但你可能不知道,早在100多年前,人類就開始利用微生物的能量進行發電了。

1911年,英國植物學家邁克爾·克里塞·波特(Michael Cressé Potter)發現大腸桿菌可將有機物中的化學能轉化為電能,他以鉑作為電極,利用大腸桿菌和酵母菌的培養液,製作了世界第一個細菌電池。

不過直到1976年,日本科學家鈴木(Suzuki)才製造出現代意義的微生物燃料電池(MFC)。到了80年代,倫敦皇家學院的彼得·貝內托(Peter Bennetto)以糖液作為養料,讓細菌在電池組里分解分子,釋放出電子向陽極運動以產生電腦,經計算這種細菌電池的發電效率比如今的太陽能電池還高40%。

在過去幾十年間,人類陸續發現了更多可以發電的細菌。從用於去除地下鈾污染物的地桿菌到我們腸道內部的厭氧糞腸球菌,都具有轉移電子發出電能的能力。

不久前發表於《自然》雜誌的「空氣發電機」(air-powered generator)研究,就是利用微生物地桿菌產生的導電蛋白奈米線形成了7微米的薄膜作為電極。

當蛋白奈米線與電極相連後,就可以利用薄膜從空氣中吸收水分,水分子被分解成氫離子和氧離子,導致電荷在薄膜頂部聚集,利用兩個電極形成的電荷差讓電子流動,從而產生電能。

研究稱這種「空氣發電機」可以7天24小時不間斷地發電,而且過程中不需要外部電源。即便在極度乾燥的地方,比如撒哈拉沙漠,一樣能發電,目前「空氣發電機」已經能為小型電子裝置供電。

此外用細菌製作的太陽能電池,甚至可以在陰天裡正常發電。英屬哥倫比亞大學的研究團隊就用大腸桿菌開發了一種廉價、永續的太陽能電池,不僅能產生比同類裝置更強的電流,發電效率幾乎不會受到光照強度的影響。

研究人員對大腸桿菌進行基因改造後,讓其可以生成番茄紅素,這種色素吸收光線並轉化為能量的效率很高,透過與一種礦物質結合覆蓋在玻璃表面,就能作為電池陽極。

圖
細菌太陽能電池示意圖
圖/ 愛范兒

不過這種技術還在初期階段,細菌會在發電過程中死亡,還難以達到傳統太陽能電池的發電量。研究人員希望將這種細菌電池用於礦井和深海勘探等微光環境。

利用細菌進行發電的好處在於,驅動這些生物燃料電池的養料隨處可見,且成本不高。腐爛的水果、工業廢水、生活污水,甚至尿液和化糞池的水可以作為養料,既環保又經濟。

圖
圖/ 愛范兒

西英格蘭大學的生物能源研究小組曾在2015年大學校園裡建立了兩個移動廁所,在小便池放置了8個由微生物燃料電池構成的電池模塊,利用尿液來驅動這些微生物燃料電池,來為LED燈發電。

此外這個研究小組還試圖透過類似的方式來為手機發電,預計需要600ml尿液(約成年人尿兩次),就能為手機充電6小時,給手機續航3小時。

電池的未來,可以用交給這些微生物嗎?

無論是病毒電池,還是發展了100多年的生物燃料電池,迄今為止都沒有被大規模商用。除了轉換效率不夠高和難以大規模量產外,成本問題也是一個不可忽視的問題。雖然細菌本身和所需的養料所需的成本都很低,但生產過程中使用的生物催化劑卻十分昂貴。

但科學家正在解決這些問題,生物燃料電池依然存在替代傳統電池的可能性。尤其是小型的可穿戴裝置和心臟起搏器植入式電子裝置,透過這種技術提供電源十分實用,也更加接近於商用。

圖
圖/ 愛范兒

正如此前一篇文章所說的,電池限制了我們對智慧產品的想像力。

傳統鋰電池的能量密度有限,過去20年都沒有取得太大的突破,這限制了電動車的發展,更讓全電動大型客機成為天方夜譚,像波音737這種大型飛機,所需的電池重量甚至要比機身更重,這顯然無法商業化。

同時生產鋰電池所需的稀有金屬,本身產量就有限,隨著人類對電池的需求增加,成本也不斷提高。雖然人類已經嘗試潛入深海採礦,但也帶來了不少關於環保問題的爭議,商業化的前景並不明朗。

如果病毒電池和細菌電池能實現低成本的大規模量產,到那時我們就真的就擁有取之不盡的電池原材料了,電池領域也將進入一個全新的階段。

圖
圖/ wikipedia

科幻電影《駭客任務》曾描繪過一個完全靠生物電池提供的世界,只不過電影裡是人類被當做電池,來為機器人提供電力。

電池的未來,或許就這個星球的生物體內。

責任編輯:林芳如

本文授權轉載自:愛范兒

關鍵字: #能源科技
往下滑看下一篇文章
突破摩爾定律極限!台灣奈微光用矽光子技術打造「會聞的晶片」,開創感測新藍海
突破摩爾定律極限!台灣奈微光用矽光子技術打造「會聞的晶片」,開創感測新藍海

在後摩爾定律時代,台灣奈微光不僅是開發出一款新晶片,更在於證明了創新不必只沿著摩爾定律持續追求製程極限,採取橫向發展同樣能找到市場著力點,台灣奈微光正運用 CMOS(Complementary Metal-Oxide-Semiconductor)製程,打造出全球少見、能「嗅聞」世界的感測平台,這場從臺大實驗室技術啟程的冒險,正讓臺灣半導體產業看見另一條通往未來的道路。

跨足大健康與車用,奈微光用矽光子打造感測新藍圖

台灣奈微光所研發的矽光子感測晶片樣品,針對多波段應用所設計的多樣化解決方案。
台灣奈微光所研發的矽光子感測晶片樣品,針對多波段應用所設計的多樣化解決方案。
圖/ 數位時代

正當全球半導體產業競相投入奈米級製程競賽,追求更小、更快的晶片時,台灣奈微光卻選擇了一條截然不同的道路。「我們的核心技術就在於光子 IC 設計。」台灣奈微光董事邱俊榮說明,他們所做的是「光的晶片」,與傳統專注於電子電路的 IC 完全不同。

長久以來,市場上若要製造中長波紅外光的光源,普遍會採用化合物半導體。然而,化合物半導體不僅成本高、良率較低,且在光譜調控上存在不少挑戰,台灣奈微光則突破性地利用 CMOS製程,直接從矽基底打造出中長波紅外光光源,顛覆了以往的作法。

邱俊榮強調,這都要歸功於臺灣半導體 CMOS 製程的高度成熟與優異良率,讓台灣奈微光能在成本上取得絕對競爭力,打破中長波紅外光技術高昂的門檻。「我們是透過 CMOS的半導體製程設備,把晶片延伸到矽光子光源與矽光子感測器。」他指出,「這就是台灣奈微光最核心的差異化。」台灣奈微光的矽光子技術,也催生出最具顛覆性的應用──微量氣體的連續偵測。傳統上,偵測微量氣體多依賴大型設備,或是藉由薄膜與電化學感測器,體積龐大、造價不菲,且難以持續監測,必須等待薄膜變化才能得到數據,台灣奈微光則運用中長波紅外光,透過氣體吸收特定波長時產生的能量變化,實現即時且連續的濃度偵測。

在應用面,台灣奈微光鎖定「大健康」與「汽車」兩大領域:希望未來能將這項技術導入智慧衣等穿戴裝置,持續監控呼吸與體內氣體變化,也可應用於電動車市場,偵測鋰電池異常釋放的氣體,為車輛安全嚴格把關。

挑戰摩爾定律侷限橫向創新,打開感測市場新局

台灣奈微光持續以矽光子技術挑戰摩爾定律的侷限,開創感測市場新局,展現臺灣半導體橫向創新的實力與決心。
台灣奈微光持續以矽光子技術挑戰摩爾定律的侷限,開創感測市場新局,展現臺灣半導體橫向創新的實力與決心。
圖/ 數位時代

這項突破性的感測能力,也展現出台灣奈微光對半導體產業發展脈絡的深刻洞察,傳統的半導體產業長期依循摩爾定律,追求單位面積內電晶體數量的極大化,也就是線寬持續縮小、功能不斷堆疊,屬於典型的「縱深式」發展,然而,隨著製程推進至1奈米世代,單台曝光機設備高達4億美元,資本支出急遽膨脹,物理極限與成本效益成為產業面臨的重大挑戰。

台灣奈微光選擇另闢蹊徑,他們將半導體製程的應用「橫向」擴展。邱俊榮指出,即便在傳統 IC 領域中,微米級製程線寬早已鮮少被提及,但在感測器等應用領域依然蘊藏廣大潛力,台灣奈微光正是運用這些「尚未被徹底開發」的微米級製程,結合自家的矽光子技術,開發出光源與感測器晶片,創造全新的應用價值,這意味著,臺灣半導體產業不只在奈米級製程領域具備領先地位,還能進一步將既有資產延伸至更多元的應用場景,而不必一味追逐最先進的製程節點。

「我們不是照著摩爾定律的方向往下挖掘,而是打開另一種可能,只要做一些物理上的調整,就能產生中長波的光源,還能偵測中長波紅外光,甚至在同一顆晶片上就可同時偵測到紫外光。」邱俊榮強調,這正是對半導體生命週期的延伸。他也提到,台灣奈微光的目標並非爭奪市場,而是藉由技術替換,協助既有產品升級、實現價值加值(value-add)。

不過,若要讓這項劃時代的光感測技術真正落地並普及至廣大市場,仍需面對商業化與規模量產的多重挑戰。為了推動晶片功能從單一走向多元,並提升其多波段的精確調控能力,台灣奈微光申請了經濟部產業發展署所推動的「驅動國內 IC 設計業者先進發展補助計畫」(簡稱晶創IC補助計畫),期望加速技術成熟與市場部署。

AI時代新戰局,台灣奈微光技術應用的無限可能

此計畫的核心目標,是讓單一晶片實現「多波段(multi-band)有效控制的微分辨識」。過去,台灣奈微光所開發的晶片多以單一功能為主,而透過晶創 IC 補助計畫的資源,將協助他們推進晶片功能的多元化。

這項技術的挑戰,在於如何精準控制多個光譜的發射。邱俊榮形容,以前的設計就像一次將所有光譜全部釋放,現在則能做到「要A動、BC不動」或「C動、AB不動」等更細膩的調控,要達成這種「誰要動、誰不動」的精準控制,必須增添新的光罩設計與更複雜的驅動機制,雖然這意味著更高的開發成本,但能顯著簡化後端機構,加速產品量產與推向市場的進程。

台灣奈微光預計在2026年6月前完成這項技術開發進入投片階段。儘管從投片到實際市場落地仍需時間,但他們已開始與紡織、電動車鋰電池、半導體廠房氣體偵測等產業客戶溝通布局,力求縮短市場開發週期。同時,在迎接AI的時代,數據品質與廣度更是關鍵。邱俊榮認為,台灣奈微光的矽光子感測技術,能為AI提供更精確、即時與連續的數據。透過晶片同時測量多種身體參數並實現每秒連續偵測,將提供豐富且精準的「身體密碼」數據,不僅能協助AI進行更深入的演算找出過去未能捕捉的變化規律,更將賦能AI在大健康等領域做出巨大貢獻。

目前,台灣奈微光正積極與半導體廠房氣體偵測廠商、大健康品牌客戶及跨產業夥伴合作。展望未來,台灣奈微光不僅要透過晶創IC補助計畫將晶片功能多元化,更將持續深化技術,證明台灣半導體產業不只在極限製程上領先,更能橫向開拓無限的市場潛力,為全球帶來前所未有的感測應用突破。

|企業小檔案|
● 企業名稱:台灣奈微光
● 董事長:張坤昱
● 核心技術:CMOS製程的先進矽光子光源晶片模組與感測晶片模組
● 資本額:新臺幣4.5億元

|驅動國內IC設計業者先進發展補助計畫簡介|
在行政院「晶片驅動臺灣產業創新方案」政策架構下,經濟部產業發展署透過推動「驅動國內IC設計業者先進發展補助計畫」,以實質政策補助,引導業者往AI、高效能運算、車用或新興應用等高值化領域之「16奈米以下先進製程」或「具國際高度信任之優勢、特殊領域」布局,以避開中國大陸在成熟製程之低價競爭,並提升我國IC設計產業價值與國際競爭力。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
蘋果能再次偉大?
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓