Spotify算準音樂喜好,讓用戶掏錢訂閱!官方卻願意教你如何「反演算法」?
Spotify算準音樂喜好,讓用戶掏錢訂閱!官方卻願意教你如何「反演算法」?

作為煎餅果子聖地,天津人評價最高的煎餅店,一定不是人們趨之若鶩的網紅店,而是「我家樓下那家」。

人們對於音樂的喜好,和天津人對煎餅果子的愛有異曲同工之處,好友熱情分享的音樂,通常會被你歸為「垃圾」。隨著卡帶、CD、MP3逐漸被行動網路取代,音樂平台最終承載起滿足人們音樂品味的重任。

社群媒體上歷久不衰的兩個問題,一個是為什麼「隨機」推薦並不是真的「隨機」,另一個就是為什麼音樂平台推薦的音樂都這麼「垃圾」。如果有機會,大概所有人最想做的事情就是去面對面問一下音樂平台的工程師,自己到底怎麼才能「調教」好這個App,讓它推薦更多自己喜歡的音樂。

以用戶數最多的音樂平台Spotify為例,他們最近開發出了一種新的演算法——偏好轉化模型(Preference Transition Model,PTM),想要預測,一年後的你會聽什麼音樂。

當我們只看見自己喜歡的內容

抖音、微博、淘寶、YouTube、Spotify,這些平台的演算法想盡辦法猜測我們的喜好,然後把它們覺得我們會喜歡的內容推給我們。

有些時候,這些算法確實猜得很準,我們看到的都是喜歡的內容。但從另一方面來說,我們看了自己喜歡的內容。

recommended-laptop-1400.png
圖/ O'Reilly

網路活動家伊萊·帕里瑟(Eli Pariser)在2011年的時候提出了他著名的「過濾氣泡」(Filter Bubble)理論:算法會根據用戶的地址、歷史點擊、過往搜索等用戶相關資訊猜測用戶喜好。這個過程中,那些與用戶意見不相同的訊息就被過濾掉了。長期下來,用戶就會無法接觸新的想法和訊息,逐漸隔絕在自己的意識形態泡沫中。

在處理過濾氣泡的問題上,Spotify一直因為精準的演算法而為人稱道。不只是讓用戶在自己熟悉的內容裡打轉,它總能幫用戶發現那些新鮮的歌曲。而恰好,這些歌曲還很討人喜歡。

揭開Spotify「演算法黑箱」

「每週發現」(Discovery Weekly)是Spotify在2015年7月的王牌欄目。每週一,Spotiy就會向用戶推薦30首完全沒聽過的歌曲。同時,它又總能帶來非常好的用戶體驗。截至2020年6月25日,每週發現總共被播放了23億小時,大約是26.65萬年,比人類文明存在的時間還長。

Spotify是怎麼做到這一切的?當然還是演算法。

Spotify主要使用了三種推薦機制——協同過濾算法(Collaborative Filtering Model)、卷積神經網絡(Convolutional Neural Networks)和自然語言分析(Natural Language Processing)。

Netflix是最早使用協同過濾算法來推薦內容的平台。在Netflix大獲成功之後,這種算法就變得越來越流行。簡單來說,它會根據用戶之間的相似性而不是內容的相似性來推薦新事物。

對Spotify來說,擺在它面前的是一個巨大的數據庫,裡面裝滿了用戶聽過內容的歷史。協同過濾算法會根據用戶A聽過的歌曲,找到也喜歡這些歌的另一個用戶B,然後向A推薦只有B聽過的歌曲。

「同喜QRS,則嘗試一下P 和T」|Erik Bernhardsson,前Spotify 員工.pn
「同樣喜歡QRS,則嘗試一下P和T」
圖/ Erik Bernhardsson

但協同過濾算法的一大缺點就是所謂的「冷啟動」,只有掌握足夠多的數據,協同過濾算法才能發揮作用。如果用戶是一個還沒有聽過多少歌的新用戶,或者資料夾裡有一首非常冷門的歌曲,協同過濾算法就無法精準匹配。

這就引入了另一種算法——自然語言處理。Word2Vec常被用在自然語言處理中,它可以將我們日常的對話編碼成數學關係——向量。

Spotify做了和Word2Vec相似的工作。它會抓取網路上描述音樂、歌曲或者歌手的詞語,通過算法分配給它們不同的權重。這個權重,一定程度上代表了人們用這個詞來描述音樂的概率。通過自然語言處理,Spotify就能確定那兩首歌彼此是相似的,從而解決冷啟動問題。即使是冷門的歌曲或歌手,也能得到推薦。

Spotify的第三種方式是卷積神經網

在前面兩種算法的幫助下,Spotify已經獲得了足夠多的數據,但卷積神經網絡可以進一步提高音樂推薦的準確性。

卷積神經網絡會分析歌曲的特徵,包括拍子、音調、模式、節奏、強弱度等。通過閱讀這些歌曲的特徵,Spotify就可以根據用戶的收聽歷史了解它們之間的相似性,匹配用戶的喜好。

Daft Punk 的歌曲「環遊世界」的數據分析圖|The Echo Nest.png
Daft Punk 的歌曲「環遊世界」的數據分析圖。
圖/ The Echo Nest

正是通過這三種算法,Spotify像魔法般猜準了用戶的喜好,打造出了千人千面的Discover Weekly。

但即使Spotify已經成為了世界上最流行的流行音樂播放軟體,即使世界上最聰明的人在這裡構建出了無比精巧的算法,過濾氣泡的「詛咒」依舊存在。

於是,Spotify,又多做了一步。

但是,人是會變的呀!

2021年4月,Spotify聯合多倫多大學發布了一篇論文《下一步去哪兒?一種用戶偏好的動態模型》(Where To Next?A Dynamic Model of User Preferences)。

他們在4年間(2016年至2020年)分析了10萬名用戶的收聽數據,來觀察用戶的消費分佈變化。他們發現,隨著時間的變化,用戶的消費習慣也在發生變化。先前的算法擅長捕捉用戶的靜態喜好,但當面對長時間的跨度時,卻無法捕捉用戶動態的喜好變化。對於Spotify的長期用戶來說,他們依舊可能困在過濾氣泡中

1623210690986
這是2016年第一季對比隨後每個季度的總消費變化直方圖。顏色越深,對比的時間跨度就越長。比如,最左邊的淺色曲線是2016年第一季和2016年第二季的對比;最右邊的深色曲線是2016年第一季和2020年第二季的對比。隨著時間的增加,變化也越來越明顯。
圖/ Spotify

Spotify同時也發現,當免費用戶消費的音樂種類越多時,他們越有可能轉化為付費用戶。也就是說,用戶聽到的音樂類型越多,他們越喜歡Spotify。

那麼該如何知道,一個人未來的音樂口味呢?

Spotify給出了一個新的演算法——偏好轉化模型(Prefenrence Transition Model,PTM)。

在這張偏好轉化模型的草圖中,我們可以大致窺見PTM的工作原理。

7246c166656817813f57d118d4424884.png
圖/ Spotify

我們現在有個用戶1號,根據歷史,可以知道他喜歡聽靈魂樂(Soul)。我們想知道,他以後會不會喜歡新世紀音樂(New Age)和布魯斯(Blues)。

轉換矩陣A是PTM的核心,將上述的數據輸入A,就會得到一個預測的結果。可以看到,新世紀音樂的數值(0.4)和靈魂樂(0.5)非常接近,那用戶1將來很有可能會喜歡上新世紀音樂。

當然,這只是一個最簡單的模型演示,實際情況要比這複雜得多。Spotify總共歸納了4000種音樂流派。而在Spotify的數據庫中,還有有3.56億個這樣的「用戶1號」。

2d8145f225cf3013c642011ede2f1fdd.png
PTM 的核心算法:指數加權移動平均分佈和泊鬆多項式兩級分佈。
圖/ Spotify
與之前的算法相比,PTM 在各項測試中都得到了最好成績|Spotify.png
與之前的算法相比,PTM 在各項測試中都得到了最好成績。
圖/ Spotify

除了預測性能,PTM的另一大特點就是可以直觀地解釋從一種音樂是如何轉換到另一種音樂的。假定我們現在有兩個音樂流派a和b,PTM就可以提供用戶在聽完a之後轉換到b的概率。這就解釋了兩個問題:

  1. a到b,哪條路徑是最短的?
  2. 如果用戶聽了a,那麼他接下來最有可能播放哪個流派?

回答這兩個問題,大大提高了PTM的效率和預測準確性。

這是一張偏好轉化的示意圖,顯示了初始流派(綠色)到目標流派(紅色)的最短路徑|Spotify.png
這是一張偏好轉化的示意圖,顯示了初始流派(綠色)到目標流派(紅色)的最短路徑。
圖/ Spotify

如何「馴服」演算法

看起來,Spotify已經做得很好了。但再聰明的演算法,都可能時不時抽一下風。畢竟,人確實很複雜,沒有人可以像你自己一樣了解自己。

Spotify官方也給出了一些建議,希望幫助你更好地「馴服」他們的演算法。

  • 給你喜歡的歌曲點個❤️。
  • 如果你不喜歡一首歌,在30秒之前跳過它。30s是個關鍵節點,如果在這之前跳過一首歌,相當於演算法在內部給它點了👎。
  • 聽聽新的歌手和他們的音樂。這樣演算法就可以更好地學習你的行為模式。
  • 提供你的年齡和位置訊息——要是你不介意的話。Spotify會根據用戶的年齡和地理位置推薦不同的音樂類型。
  • 如果你不想Spotify注意到你的行為,可以使用「私密模式」。
  • 最後,保持耐心。算法在設計中會忽略新的收聽行為中一些迅速的、突然出現的峰值,因為許多人會分享他們的Spotify登錄信息。因此新的收聽活動可能不會立刻導致你的播放列表變化。

本文授權轉載自:極客公園

責任編輯:郭昱彣、錢玉紘

關鍵字: #Spotify #演算法
往下滑看下一篇文章
科技創新守護海洋!犀牛盾以循環創新思維破解塑膠危機、賦能永續未來
科技創新守護海洋!犀牛盾以循環創新思維破解塑膠危機、賦能永續未來

全球每年約生產4億噸塑膠垃圾,只有不到10%有被回收,其中約有1100萬至1400萬噸最終流入海洋。在十分有限的回收量中,約 8 成來自相對單純、流程完整的寶特瓶回收;反觀,同樣是高頻消費品的手機配件,回收率卻不到 1%。這個現象,對長期從事材料研究的犀牛盾共同創辦人暨執行長王靖夫來說,是他反思事業選擇的開端,也是突破的轉捩點。

「手機殼產業其實是塑膠產業的縮影!」他在2025 亞馬遜港都創新日的專題演講上直言。手機殼本質上類似一種快時尚商品,每年有超過十億個手機殼被製造,但產業並未建立材料規範,多數產品混用多種複合塑膠、填料與添加物,既難拆解、也沒有回收機制。結果是,一個重量相當於超過二十個塑膠袋的手機殼,在生命周期終點只能被視為垃圾。

王靖夫指出,連結構複雜的資訊科技產品,回收率都能達 45%,但手機殼明明是最簡單、最應該回收的產品,為什麼無法有效回收?這個命題讓他意識到,與其只做手機殼,不如正面處理塑膠問題本身,從材料設計、製程到後端回收再生,開創循環之道。

犀牛盾共同創辦人暨執行長王靖夫於2025 亞馬遜港都創新日分享犀牛盾如何回應塑膠挑戰、開創循環模式。
犀牛盾共同創辦人暨執行長王靖夫於2025 亞馬遜港都創新日分享犀牛盾如何回應塑膠挑戰、開創循環模式。
圖/ Amazon Web Services 提供

以材料工程打造手機殼的循環力

若塑膠要進入循環體系,前提是「材料必須足夠單純」。王靖夫很快意識到,問題不在回收端,關鍵在最開始的設計端。多數手機殼由多款不同塑膠、橡膠件甚至金屬等複合材料組成,無法被經濟化拆解,也難以透過現有流程再製。為此,犀牛盾在2017年起重新整理產品線,希望借鑑寶特瓶成功循環的經驗,擬定出手機殼應有的設計框架。

新框架以「單 1 材料、0 廢棄、100% 循環設計」為核心,犀牛盾從材料工程出發,建立一套循環路徑,包括:回收再生、溯源管控、材料配方、結構設計、循環製程、減速包裝與逆物流鏈等,使產品從生產到回收的每一階段,皆與核心精神環環相扣。

王靖夫表示,努力也終於有了成果。今年,第一批以回收手機殼再製的新產品已正式投入生產,犀牛盾 CircularNext 回收再生手機殼以舊殼打碎、造粒後再製成型;且經內部測試顯示,材料還可反覆再生六次以上仍維持耐用強度,產品生命週期大大突破「一次性」。

另外,今年犀牛盾也推出的新一代的氣墊結構手機殼 AirX,同樣遵守單一材料規範,透過結構設計打造兼具韌性、耐用、便於回收的產品。由此可見,產品要做到高機能與循環利用,並不一定矛盾。

犀牛盾從材料學出發,實現全線手機殼產品皆採「單 1 材料」與模組化設計,大幅提升回收循環再生效率。
犀牛盾從材料學出發,實現全線手機殼產品皆採「單 1 材料」與模組化設計,大幅提升回收循環再生效率。
圖/ 犀牛盾

海上掃地機器人將出海試營運

在實現可循環材料的技術後,王靖夫很快意識到另一項挑戰其實更在上游——若塑膠源源不斷流入環境,再強的循環體系也只是疲於追趕。因此,三年前,犀牛盾再提出一個更艱鉅的任務:「能不能做到塑膠負排放?」也就是讓公司不僅不再製造新的塑膠,還能把已散落在環境中的塑膠撿回來、重新變成可用原料。

這個想法也促成犀牛盾啟動「淨海計畫」。身為材料學博士,王靖夫將塑膠問題拆為三類:已經流落環境、難以回收的「考古塑膠(Legacy Plastic)」;仍在使用、若無管理便會成為下一批廢棄物的「現在塑膠(Modern Plastic)」;以及未來希望能在自然環境中真正分解的「未來塑膠(Future Plastic)」。若要走向負排放,就必須對三個路徑同時提出技術與管理解方。

其中最棘手的是考古塑膠,尤其是海洋垃圾。傳統淨灘方式高度仰賴人力,成本極高,且難以形成可規模化的商業模式,因此無法提供可持續的海廢來源作為製造原料。為突破這項瓶頸,犀牛盾決定自己「下海」撿垃圾,發展PoC(概念驗證)項目,打造以 AI 作為核心的淨海系統。

王靖夫形容,就像是一台「海上的掃地機器人」。結合巡海無人機進行影像辨識、太陽能驅動的母船作為能源與運算平台,再由輕量子船前往定位點進行海廢收集:目的就是提升撿拾效率,同時也累積資料,為未來的規模化建立雛形。

從海洋到河川,探索更多可能

淨海計畫的下一步,不只是把「海上的掃地機器人」做出來,王靖夫說:「目標是在全球各地複製擴張規模化、讓撿起的回收塑膠真正的再生利用。」也就是說,海上平台終究要從單點示範,走向可標準化、在不同海域與國家部署的技術模組,持續穩定地把海廢帶回經濟體。

犀牛盾CircularBlue™海洋廢棄物過濾平台初號機將出海試營運,盼解決沿岸海洋廢棄物問題。
犀牛盾CircularBlue™海洋廢棄物過濾平台初號機將出海試營運,盼解決沿岸海洋廢棄物問題。
圖/ 犀牛盾

他進一步指出,「其實這套系統不限於海洋,也可以在河川上。畢竟很多海洋垃圾是從河流來的。」未來若能推進到河川與港灣,將塑膠在進海之前就攔截下來,不僅有助於減少海洋污染,回收後的材料也更乾淨、更適合再生,步步朝向終極願景——隨著時間推進,海中垃圾愈來愈少,被撿起、回收後再生的塑膠會越來越多。

「我們已經證明兩件事的可行性:一端是產品的循環設計,一端是 AI 賦能海廢清理的可能性。」王靖夫笑說,塑膠管理命題不只為自己和公司找到新的長期目標,也讓他順利度過中年危機。「選擇改變,留給下一代更好的未來。」他相信,即便是一家做手機殼的公司,也能創造超乎想像的正向改變。

AWS 2025 亞馬遜港都創新日,集結產業先行者分享創新經驗。
AWS 2025 亞馬遜港都創新日,集結產業先行者分享創新經驗。
圖/ Amazon Web Services 提供

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓