Spotify算準音樂喜好,讓用戶掏錢訂閱!官方卻願意教你如何「反演算法」?
Spotify算準音樂喜好,讓用戶掏錢訂閱!官方卻願意教你如何「反演算法」?

作為煎餅果子聖地,天津人評價最高的煎餅店,一定不是人們趨之若鶩的網紅店,而是「我家樓下那家」。

人們對於音樂的喜好,和天津人對煎餅果子的愛有異曲同工之處,好友熱情分享的音樂,通常會被你歸為「垃圾」。隨著卡帶、CD、MP3逐漸被行動網路取代,音樂平台最終承載起滿足人們音樂品味的重任。

社群媒體上歷久不衰的兩個問題,一個是為什麼「隨機」推薦並不是真的「隨機」,另一個就是為什麼音樂平台推薦的音樂都這麼「垃圾」。如果有機會,大概所有人最想做的事情就是去面對面問一下音樂平台的工程師,自己到底怎麼才能「調教」好這個App,讓它推薦更多自己喜歡的音樂。

以用戶數最多的音樂平台Spotify為例,他們最近開發出了一種新的演算法——偏好轉化模型(Preference Transition Model,PTM),想要預測,一年後的你會聽什麼音樂。

當我們只看見自己喜歡的內容

抖音、微博、淘寶、YouTube、Spotify,這些平台的演算法想盡辦法猜測我們的喜好,然後把它們覺得我們會喜歡的內容推給我們。

有些時候,這些算法確實猜得很準,我們看到的都是喜歡的內容。但從另一方面來說,我們看了自己喜歡的內容。

recommended-laptop-1400.png
圖/ O'Reilly

網路活動家伊萊·帕里瑟(Eli Pariser)在2011年的時候提出了他著名的「過濾氣泡」(Filter Bubble)理論:算法會根據用戶的地址、歷史點擊、過往搜索等用戶相關資訊猜測用戶喜好。這個過程中,那些與用戶意見不相同的訊息就被過濾掉了。長期下來,用戶就會無法接觸新的想法和訊息,逐漸隔絕在自己的意識形態泡沫中。

在處理過濾氣泡的問題上,Spotify一直因為精準的演算法而為人稱道。不只是讓用戶在自己熟悉的內容裡打轉,它總能幫用戶發現那些新鮮的歌曲。而恰好,這些歌曲還很討人喜歡。

揭開Spotify「演算法黑箱」

「每週發現」(Discovery Weekly)是Spotify在2015年7月的王牌欄目。每週一,Spotiy就會向用戶推薦30首完全沒聽過的歌曲。同時,它又總能帶來非常好的用戶體驗。截至2020年6月25日,每週發現總共被播放了23億小時,大約是26.65萬年,比人類文明存在的時間還長。

Spotify是怎麼做到這一切的?當然還是演算法。

Spotify主要使用了三種推薦機制——協同過濾算法(Collaborative Filtering Model)、卷積神經網絡(Convolutional Neural Networks)和自然語言分析(Natural Language Processing)。

Netflix是最早使用協同過濾算法來推薦內容的平台。在Netflix大獲成功之後,這種算法就變得越來越流行。簡單來說,它會根據用戶之間的相似性而不是內容的相似性來推薦新事物。

對Spotify來說,擺在它面前的是一個巨大的數據庫,裡面裝滿了用戶聽過內容的歷史。協同過濾算法會根據用戶A聽過的歌曲,找到也喜歡這些歌的另一個用戶B,然後向A推薦只有B聽過的歌曲。

「同喜QRS,則嘗試一下P 和T」|Erik Bernhardsson,前Spotify 員工.pn
「同樣喜歡QRS,則嘗試一下P和T」
圖/ Erik Bernhardsson

但協同過濾算法的一大缺點就是所謂的「冷啟動」,只有掌握足夠多的數據,協同過濾算法才能發揮作用。如果用戶是一個還沒有聽過多少歌的新用戶,或者資料夾裡有一首非常冷門的歌曲,協同過濾算法就無法精準匹配。

這就引入了另一種算法——自然語言處理。Word2Vec常被用在自然語言處理中,它可以將我們日常的對話編碼成數學關係——向量。

Spotify做了和Word2Vec相似的工作。它會抓取網路上描述音樂、歌曲或者歌手的詞語,通過算法分配給它們不同的權重。這個權重,一定程度上代表了人們用這個詞來描述音樂的概率。通過自然語言處理,Spotify就能確定那兩首歌彼此是相似的,從而解決冷啟動問題。即使是冷門的歌曲或歌手,也能得到推薦。

Spotify的第三種方式是卷積神經網

在前面兩種算法的幫助下,Spotify已經獲得了足夠多的數據,但卷積神經網絡可以進一步提高音樂推薦的準確性。

卷積神經網絡會分析歌曲的特徵,包括拍子、音調、模式、節奏、強弱度等。通過閱讀這些歌曲的特徵,Spotify就可以根據用戶的收聽歷史了解它們之間的相似性,匹配用戶的喜好。

Daft Punk 的歌曲「環遊世界」的數據分析圖|The Echo Nest.png
Daft Punk 的歌曲「環遊世界」的數據分析圖。
圖/ The Echo Nest

正是通過這三種算法,Spotify像魔法般猜準了用戶的喜好,打造出了千人千面的Discover Weekly。

但即使Spotify已經成為了世界上最流行的流行音樂播放軟體,即使世界上最聰明的人在這裡構建出了無比精巧的算法,過濾氣泡的「詛咒」依舊存在。

於是,Spotify,又多做了一步。

但是,人是會變的呀!

2021年4月,Spotify聯合多倫多大學發布了一篇論文《下一步去哪兒?一種用戶偏好的動態模型》(Where To Next?A Dynamic Model of User Preferences)。

他們在4年間(2016年至2020年)分析了10萬名用戶的收聽數據,來觀察用戶的消費分佈變化。他們發現,隨著時間的變化,用戶的消費習慣也在發生變化。先前的算法擅長捕捉用戶的靜態喜好,但當面對長時間的跨度時,卻無法捕捉用戶動態的喜好變化。對於Spotify的長期用戶來說,他們依舊可能困在過濾氣泡中

1623210690986
這是2016年第一季對比隨後每個季度的總消費變化直方圖。顏色越深,對比的時間跨度就越長。比如,最左邊的淺色曲線是2016年第一季和2016年第二季的對比;最右邊的深色曲線是2016年第一季和2020年第二季的對比。隨著時間的增加,變化也越來越明顯。
圖/ Spotify

Spotify同時也發現,當免費用戶消費的音樂種類越多時,他們越有可能轉化為付費用戶。也就是說,用戶聽到的音樂類型越多,他們越喜歡Spotify。

那麼該如何知道,一個人未來的音樂口味呢?

Spotify給出了一個新的演算法——偏好轉化模型(Prefenrence Transition Model,PTM)。

在這張偏好轉化模型的草圖中,我們可以大致窺見PTM的工作原理。

7246c166656817813f57d118d4424884.png
圖/ Spotify

我們現在有個用戶1號,根據歷史,可以知道他喜歡聽靈魂樂(Soul)。我們想知道,他以後會不會喜歡新世紀音樂(New Age)和布魯斯(Blues)。

轉換矩陣A是PTM的核心,將上述的數據輸入A,就會得到一個預測的結果。可以看到,新世紀音樂的數值(0.4)和靈魂樂(0.5)非常接近,那用戶1將來很有可能會喜歡上新世紀音樂。

當然,這只是一個最簡單的模型演示,實際情況要比這複雜得多。Spotify總共歸納了4000種音樂流派。而在Spotify的數據庫中,還有有3.56億個這樣的「用戶1號」。

2d8145f225cf3013c642011ede2f1fdd.png
PTM 的核心算法:指數加權移動平均分佈和泊鬆多項式兩級分佈。
圖/ Spotify
與之前的算法相比,PTM 在各項測試中都得到了最好成績|Spotify.png
與之前的算法相比,PTM 在各項測試中都得到了最好成績。
圖/ Spotify

除了預測性能,PTM的另一大特點就是可以直觀地解釋從一種音樂是如何轉換到另一種音樂的。假定我們現在有兩個音樂流派a和b,PTM就可以提供用戶在聽完a之後轉換到b的概率。這就解釋了兩個問題:

  1. a到b,哪條路徑是最短的?
  2. 如果用戶聽了a,那麼他接下來最有可能播放哪個流派?

回答這兩個問題,大大提高了PTM的效率和預測準確性。

這是一張偏好轉化的示意圖,顯示了初始流派(綠色)到目標流派(紅色)的最短路徑|Spotify.png
這是一張偏好轉化的示意圖,顯示了初始流派(綠色)到目標流派(紅色)的最短路徑。
圖/ Spotify

如何「馴服」演算法

看起來,Spotify已經做得很好了。但再聰明的演算法,都可能時不時抽一下風。畢竟,人確實很複雜,沒有人可以像你自己一樣了解自己。

Spotify官方也給出了一些建議,希望幫助你更好地「馴服」他們的演算法。

  • 給你喜歡的歌曲點個❤️。
  • 如果你不喜歡一首歌,在30秒之前跳過它。30s是個關鍵節點,如果在這之前跳過一首歌,相當於演算法在內部給它點了👎。
  • 聽聽新的歌手和他們的音樂。這樣演算法就可以更好地學習你的行為模式。
  • 提供你的年齡和位置訊息——要是你不介意的話。Spotify會根據用戶的年齡和地理位置推薦不同的音樂類型。
  • 如果你不想Spotify注意到你的行為,可以使用「私密模式」。
  • 最後,保持耐心。算法在設計中會忽略新的收聽行為中一些迅速的、突然出現的峰值,因為許多人會分享他們的Spotify登錄信息。因此新的收聽活動可能不會立刻導致你的播放列表變化。

本文授權轉載自:極客公園

責任編輯:郭昱彣、錢玉紘

關鍵字: #Spotify #演算法
往下滑看下一篇文章
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作
影音體驗成行動網路新戰場!Opensignal 揭台灣大哥大奪「雙料冠軍」,連網穩定撐起高負載影音與 AI 協作

現代人手機不離手,通勤時滑短影音、午休追串流影劇、下午開視訊會議,網路影音應用成為工作與生活的普遍情境。然而,一旦畫面卡頓、畫質不穩,或聲畫不同步,使用體驗立刻打折,甚至影響工作效率與專業判斷。

也因此,網路品質不再只是「快不快」的問題,更關乎能否在高使用量的日常情境下,維持穩定、連續的表現;對此,第三方評測也採用更貼近使用者情境的方式衡量網路體感。而 Opensignal 最新報告指出,台灣大哥大在影音體驗相關項目是業界唯一同時拿下「影音體驗」與「5G 影音體驗」雙項獎項的電信商,其中,關鍵的差異是什麼?

為何「影音體驗」是網路品質的關鍵指標?

愈來愈多消費者入手旗艦機,追求的不只是硬體規格,還有流暢的 AI 應用與多工協作。然而,無論是視訊即時翻譯或雲端會議,這些高階功能都有一個共同前提:網路必須穩定。一旦網路品質不佳導致畫質下降或音畫不同步,旗艦級的 AI 功能將形同虛設。

這也意味著,檢驗網路價值的標準已經改變。如今,不能只看單點測速的瞬間峰值,更重要的是高負載情境下的耐力表現。因此,比起單點測速,影音體驗會是更完整的測試標準,直接挑戰了網路在室內深處、移動途中或人潮聚集時的網路實力;而唯有在長時間串流下依然不卡頓、不降畫質,才稱得上是高品質的連線。

換言之,隱身在硬體背後的電信商,才是發揮旗艦機性能的關鍵;唯有透過最佳網路品質,才能讓手中的旗艦機既是規格領先、也是體驗領先。

唯一影音體驗雙料冠軍,Opensignal 權威認證的有感體驗

雖然相較於測速數據,影音體驗更貼近日常使用,但也更難量化。對此,國際權威認證 Opensignal 的「影音體驗分數」,依循 ITU 國際標準,透過真實用戶裝置在行動網路上進行影音串流的實測數據,觀察不同電信網路在實際使用情境下的表現。

簡單來說,評測聚焦三項核心指標:影片載入時間、播放期間的卡頓率,以及畫質(解析度)是否能穩定維持。使用者從開始播放到持續觀看的整體品質,分數以 0–100 呈現,分數愈高,代表在三項指標的表現愈佳。相較於單點測速,這類評測更能呈現長時間、高使用量下的網路品質。

人流情境不降速.jpg
圖/ 數位時代

而在今年最新公布的 Opensignal 評測中,台灣大哥大獲得「影音體驗」獎項唯一雙料冠軍。其中,「整體影音體驗」為全台獨得第一名,「5G 影音體驗」則與遠傳並列第一。

之所以能在影音體驗拔得頭籌,關鍵在於台灣大哥大目前是全台唯一整合 3.5GHz 頻段 60MHz 與 40MHz、形成 100MHz 總頻寬的電信業者,亦是現階段全台最大 5G 黃金頻寬配置。頻寬愈寬,代表單位時間內可傳輸的資料量愈大;在大量使用者同時進行影音串流、視訊互動的狀態下,更能維持穩定傳輸、減少壅塞發生機率。

台灣大獲權威認證,NRCA技術撐起穩定基礎

除了頻寬帶來的流量優勢,台灣大哥大也採用「NRCA 高低頻整合技術」,也就是透過高低頻協作,讓 3.5GHz 負責高速傳輸、700MHz 補強覆蓋與室內連線,改善室內深處與移動情境的訊號落差,提升連線連續性。

同時,為了讓住家、通勤動線、商圈與觀光熱點等高使用場域維持穩定表現,台灣大哥大已在全台超過213個住宅、觀光及商圈熱點完成 100MHz 布建,提升人流密集區的網路覆蓋率。

5G高速(小).jpg
圖/ dreamstime

值得注意的是,在今年的 Opensignal 評比中,台灣大哥大還拿下了「5G 語音體驗」與「網路可用率」兩項第 1 名,累計獲得 4 項獎項。這意味著不僅具備影音體驗優勢,在語音互動與連線率等關乎用戶日常應用的基礎指標,皆有亮眼成績。

尤其,隨著影音與即時互動成為新世代的工作常態,網路品質的重要性只會持續上升。無論是遠距協作所仰賴的視訊與畫面共享即時同步,內容創作對直播與即時上傳連續性的要求,或是 AI 視訊互動、即時翻譯與會議摘要等新應用,都高度依賴低延遲與穩定的資料傳輸。網路品質因此不再只是連線條件,更是支撐內容生產、協作效率與新應用落地的基礎能力,甚至直接牽動競爭力。

而台灣大哥大經 Opensignal 認證、於多項關鍵指標領先業界,不僅將成為 AI 時代的重要後盾,也讓使用者能更充分發揮高階手機的效能,把「快、穩、滑順」落實在每天的工作與生活中。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓