矽光子是什麼?真正的矽光子概念股有哪些?圖解矽光子原理
矽光子是什麼?真正的矽光子概念股有哪些?圖解矽光子原理

AI時代下,矽光子因為有著高效能、低功耗及小尺寸等特點,正迅速成為產業界焦點。近期矽光子(CPO)概念股表現亮眼,包括光焱科技(7728)、台積電(2330)等,但究竟矽光子是什麼?真正的矽光子概念股有哪些?

生成式人工智慧需求看漲,帶動資料傳輸需求,再加上台積電在半導體展上分享矽光子(SiPh:Silicon Photonics)技術進度,讓矽光子成為一躍成市場當紅炸子雞,矽光子概念股也獲得高度關注,即便AI概念股近期熄火,矽光子概念股仍逆勢發光。台積電總裁魏哲家也提到,當前成長中的需求都需要大量數據傳輸,台積電也著手研發矽光子技術多年,未來有望藉由矽光子技術,推出能源效率更好的晶片產品。

但究竟矽光子背後原理是什麼?怎樣的概念股,才算是「真正的」矽光子概念股呢?

矽光子(SiPh:Silicon photonics)是什麼?

晶片.jpg
矽光子技術泛指將許多分立的電子元件與光學元件,利用成熟的矽晶圓與半導體製程,做成微型化的晶片,主要應用在資料中心做短距離傳輸資料。
圖/ shutterstock

目前的電腦都是使用電訊號進行資料運算,可以使用電訊號或光訊號進行資料傳輸,由於光訊號的頻寬比電訊號高出許多,因此資料中心的伺服器之間目前大多使用光訊號傳輸,伺服器會先經由「光發射模組」將電訊號的「開與關」轉換成光訊號的「亮與暗」再送入光纖,傳送到接收端再經由「光接收模組」將光訊號的「亮與暗」轉換成電訊號的「開與關」,如下圖所示。

矽光子原理_傳送端使用光發射模組,接收端使用光接收模組。.jpg
圖/ 曲建仲

可以傳遞電磁波訊號的介質稱為「波導(Waveguide)」,因為光是一種電磁波,因此可以傳導光的介質稱為「光波導(Optical waveguide)」,光纖(Fiber)是用來傳遞光訊號最基本的光學元件,因此光纖就是一種光波導,但是光通訊系統必須處理光訊號的分光、合光、切換、調變等,因此除了光纖以外,仍然需要其它可以處理光訊號的元件,我們稱為「光波導元件」或「積體光學(OIC:Optical Integrated Circuit)」。

製作積體光學元件的主要材料有「氧化矽(Silica)」與「矽(Silicon)」兩種:

** 氧化矽(Silica)** :折射率大約1.5,是石英或玻璃的主要成分,其中二氧化矽的單晶又稱為「石英(Quartz)」,二氧化矽的非晶又稱為「石英玻璃」,外觀呈透明無色,另外一種光學性質與氧化矽很像的材料是「玻璃(Glass)」,玻璃是氧化鉀、氧化鈉、氧化矽的混合物,外觀呈透明無色,由於是混合物,光穿透時損耗比較大,這些材料的光學性質都不錯,可以直接在上面製作折射率較大的光波導。

** 矽(Silicon)** :折射率大約3.5,就是晶圓廠使用的矽晶圓,雖然矽晶圓在外觀上不透明,看起來光波好像無法穿透,但是光通訊產業所使用的光源都是「紅外光」,紅外光可以穿透矽晶圓,只是損耗比較大而已,由於矽晶圓的製程比較成熟,所以許多公司都試著發展這種技術,使用矽晶圓做為光波導元件再整合其他主動與被動光學元件通稱為「矽光子(Silicon photonics)」。

簡單地說,目前產業上都是使用矽晶片來製作運算元件, 未來如果能夠把處理光訊號的「光波導元件」整合到矽晶片上,讓矽晶片同時處理電訊號的運算與光訊號的傳輸,就稱為「矽光子(Silicon photonics)」 ,可以縮小元件尺寸,減少耗電量,降低成本,但是目前這種矽光子元件門檻較高,技術還不成熟。

延伸閱讀:台積電:矽光子、消費性AI是新機會!魏哲家為何看好?

傳統光收發模組,是低階的封裝技術

目前商業上已經成熟量產的「光收發模組(Optical transceiver)」是結合「傳送光學子系統(TOSA)」與「接收光學子系統(ROSA)」。

傳送光學子系統(TOSA:Transmitter Optical Sub-Assembly) :將左側金手指輸入的電訊號,經由雷射驅動器來驅動雷射二極體(LD)轉換成光訊號,傳送到右側的光纖輸出。

接收光學子系統(ROSA:Receiver Optical Sub-Assembly) :將右側光纖輸入的光訊號,經由光偵測器(PD)與轉阻放大器(TIA)轉換成電訊號,傳送到左側的金手指輸出。

矽光子原理_傳統光收發模組的內部組成與外觀構造.jpg
傳統光收發模組的內部組成與外觀構造。
圖/ lumenci.com
矽光子原理2_傳統光收發模組的內部組成與外觀構造.jpg
傳統光收發模組的內部組成與外觀構造。
圖/ lumenci.com

由上圖可以看出,目前商業上已經成熟量產的光收發模組都是低階的封裝技術,用圖中綠色的印刷電路板(PCB)結合雷射二極體(LD)與光偵測器(PD)等元件,金屬走線距離長,元件尺寸大,耗電量高。而矽光子元件門檻較高,技術還不成熟,該怎麼辦呢?因此科學家想到,可以使用「先進封裝」的方式,把運算用的矽晶片與光收發模組包裝在一起,我們稱為「共同封裝光學(CPO:Co-Packaged Optics)」。

共同封裝光學(CPO),是矽光子的前哨站

傳統光交換機是將矽晶圓製作的數位交換晶片與光收發模組(Transceiver)使用印刷電路板(PCB)連接起來,交換晶片(黑色)與光收發模組(紅色)距離較遠,元件尺寸大耗電量高,如圖a所示;而共同封裝光學(CPO)是將矽晶圓製作的數位交換晶片(黑色)與光收發模組(紅色)直接利用先進封裝包裝在一起,元件尺寸小耗電量低,如圖b所示。

矽光子原理_傳統插拔式光收發模組(Transceiver)與共同封裝光學(CPO)示意圖.jpg
傳統插拔式光收發模組(Transceiver)與共同封裝光學(CPO)示意圖。
圖/ 工研院

而台積電很早就投入這個領域,針對數據中心市場推出了新型的先進封裝技術「緊湊通用光子引擎(COUPE:Compact Universal Photonic Engine)」。

下圖是思科(CISCO)與智邦(Accton)合作開發的光交換器,圖中的數位交換晶片就是使用共同封裝光學(CPO)技術將數位交換晶片與光收發模組包裝在一起,取代傳統的插拔式光收發模組,並以外接雷射的方式提供矽光子晶片光源,但是其中最關鍵的共同封裝光學技術大部分是掌握在國外廠商手中,例如英特爾(Intel)、博通(Broadcom)、Cisco/Luxtera/Lightwire/Acacia、Juniper/Aurrion等。

矽光子原理_使用共同封裝光學(CPO)製作的光交換機。.jpg
使用共同封裝光學CPO製作的光交換機。
圖/ 思科(CISCO)

矽光子可以應用在什麼領域?

矽光子(SiPh)技術泛指將許多原本是分立的電子元件與光學元件,利用成熟的矽晶圓與半導體製程,製作成微型化的晶片,用來取代傳統「光收發模組(Optical transceiver)」,目前主要應用在資料中心做為短距離傳輸資料,或是應用在長矩離光纖網路。

未來如果矽光子技術成熟,甚至可以取代現在的印刷電路板或導線載板上的銅導線,用光訊號取代電訊號,應用在晶片到晶片之間的資料傳輸,可以有效提高元件密度、縮小元件體積,增加傳輸速率,提高可靠性與良率,同時由於使用矽晶圓製作,可以兼具量產與成本優勢。

到底誰才是「矽光子概念股」?

由於矽光子元件門檻較高,技術還不成熟,所以會先以「共同封裝光學(CPO)」的方式實現,慢慢才會達成完全「矽光子」的終極目標。目前真正在設計或製作矽光子或CPO的,主要就是晶圓廠或封裝廠,例如台積電或日月光,由於CPO的產品才剛開始,要到2024或2025年才會放量。

而大家現在看到媒體上報導的「矽光子概念股」大部分是在做傳統光收發模組或元件的廠商。由於目前大部分資料中心仍然是使用傳統光收發模組,因此這些廠商最近業績成長主要是因為資料中心需求增加,和矽光子關係不大。

等到CPO開始放量,甚至矽光子技術成熟,將會取代傳統光收發模組,使傳統光收發模組用量大減,這些廠商如果技術沒有跟上,未來可能會慢慢被邊緣化,所以是利多還是利空必須個別判斷?千萬別再弄錯方向了唷!

延伸閱讀:矽光子是什麼?圖解矽光子:原理是什麼?概念股有哪些?

FOPLP是什麼?概念股有哪些?群創FOPLP技術為何受台積電青睞?

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場)

責任編輯:林美欣

往下滑看下一篇文章
總統科學獎揭曉!梁賡義院士、葉均蔚院士用創新與堅持,寫下臺灣科學光輝新頁
總統科學獎揭曉!梁賡義院士、葉均蔚院士用創新與堅持,寫下臺灣科學光輝新頁

【總統科學獎】宗旨在於提升臺灣在國際學術界之地位,獎勵數理科學、生命科學、人文及社會科學、工程科學在國際學術研究上具創新性且貢獻卓著之學者,尤以對臺灣社會有重大貢獻之基礎學術研究人才為優先獎勵對象。

2025年11月11日,總統科學獎頒獎典禮於總統府正式舉行。2001年設立、每2年頒發1次的總統科學獎,今年已邁入第13屆,本屆的2位獲獎者,分別是生命科學組的院士梁賡義、工程科學組的院士葉均蔚。2位臺灣的科研泰斗,不僅全心全意投入創新,更樹立了典範,成為所有科研人員的榜樣。

總統賴清德在致詞時,引用諾貝爾和平獎得主曼德拉(Nelson Mandela)的話指出:「在事情完成之前,一切都看似不可能。這說明了2位院士的故事,他們對未知世界保持熱情、好奇,認真從基礎研究做起,並堅持努力到最後一刻,成功終將屬於他們。」

2025年總統科學獎得主,生命科學組 梁賡義 院士(右)、工程科學組 葉均蔚 院士(左)。
2025年總統科學獎得主,生命科學組 梁賡義 院士(右)、工程科學組 葉均蔚 院士(左)。
圖/ 數位時代

梁院士開創廣義估計方程式 ,加速新藥問世,造福千萬病患

從數學跨足生物統計、再投身高等教育與國家衛生的梁院士,從小就喜歡數學的嚴謹,在美國華盛頓大學攻讀博士期間,因為接觸到當時炙手可熱的「存活分析」,進而對生物統計產生興趣,「投入『生物統計』是條不歸路,因為我發現,統計工具的發展,可以對人類健康有間接幫助。」後來,他前往美國約翰霍普金斯大學任教,又與同事Scott Zeger研發出新的統計方法「廣義估計方程式」,突破了傳統分析方法必須假設所有樣本獨立的侷限,讓長期追蹤資料的解讀更嚴謹,也成為全球健康研究不可或缺的工具。

梁院士研究做得出色,卻不只將心力擺在學術上,他更心心念念著臺灣的發展,持續關心高等教育、國家衛生等領域。他在美國任教的28年間,幾乎年年暑假,都返國舉辦研討會,分享國際生物統計和流行病學的新知。2010年,他乾脆辭去教職,回臺擔任國立陽明大學校長,將陽明大學打造成醫學、人文並重的全人大學。

數位時代
賴總統親自頒發「2025年總統科學獎」殊榮予梁院士。
圖/ 數位時代

2017年,他又接下國家衛生研究院院長一職,並在新冠肺炎爆發期間,擔任中央流行疫情指揮中心研發組組長,與阿斯特捷利康(AstraZeneca)簽約,採購1千萬劑疫苗,完成防疫任務,「所以獲得總統科學獎,不僅是個人的榮耀,更是國家對全人教育的推動、公共衛生實踐,以及任務導向的研究重要性的肯定。能在其中有一些貢獻,我深感榮幸。」

高熵合金之父葉院士,堅持不懈打破材料學定律

被譽為「高熵合金之父」的葉院士,打破材料學界以1~2種主元素為基底的傳統,開創出能讓數十種元素混合的「高熵合金」,為元素週期表注入嶄新生命力,在半導體、智慧機械、綠能科技、國防與生醫等領域帶來突破性的應用。過去合金多以單一金屬為主,再加入少量元素微調性質,金屬種類愈多反而愈脆、延展性與硬度下降,使應用受限;然而高熵合金卻反其道而行,以4、5種以上金屬融合,展現出更佳的延展性、耐腐蝕性與硬度,重新定義合金的可能性。

令人驚訝的是,30年前葉院士提出高熵合金構想時,曾被質疑「觀念錯誤、毫無可能」。他不畏質疑,透過紮實的實驗與論證,於2004年一口氣發表5篇高熵材料論文,為高熵合金命名、定義並奠定理論基礎,後續更平均每年發表逾10篇研究,提出高熵效應、嚴重晶格扭曲效應、緩慢擴散效應與雞尾酒效應等核心概念,開創全新的材料科學典範。

數位時代
賴總統親自頒發「2025年總統科學獎」殊榮予葉院士。
圖/ 數位時代

如今,高熵合金不只在學界掀起熱潮,更成功落地產業。「學以致用非常重要!」葉院士強調,學術研究不該停留在象牙塔,而應投入產業、協助解決關鍵瓶頸。他不僅與國立清華大學共同成立「高熵材料研發中心」,也創辦全球首家高熵材料公司,推動技術轉移與產業升級,讓高熵合金真正走向世界舞臺。

所有總統科學獎得獎人的科學成就及重要貢獻,不僅提升臺灣學術聲譽及國際競爭力,對於增進人類生活福祉更有深遠的影響,實為臺灣學術界的最高典範。而本屆梁院士、葉院士2位得獎人終身投入科學探索、人才培育的成果,嘉惠了整個社會,更成就跨世代的深遠影響,為臺灣科學寫下光輝一頁。

【總統科學獎委員會 廣告】

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
進擊的機器人
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓